Presynaptic calcium currents in squid giant synapse. 1981

R Llinás, and I Z Steinberg, and K Walton

A voltage clamp study has been performed in the presynaptic terminal of the squid stellate ganglion. After blockage of the voltage-dependent sodium and potassium conductances, an inward calcium current is demonstrated. Given a step-depolarization pulse, this voltage- and time-dependent conductance has an S-shaped onset. At the "break" of the voltage step, a rapid tail current is observed. From these results a kinetic model is generated which accounts for the experimental results and predicts for the time course and amplitude a possible calcium entry during presynaptic action potentials.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

R Llinás, and I Z Steinberg, and K Walton
June 1972, Science (New York, N.Y.),
R Llinás, and I Z Steinberg, and K Walton
April 1977, Experientia,
R Llinás, and I Z Steinberg, and K Walton
June 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R Llinás, and I Z Steinberg, and K Walton
December 1986, The Journal of physiology,
R Llinás, and I Z Steinberg, and K Walton
April 1975, Journal of neurocytology,
R Llinás, and I Z Steinberg, and K Walton
May 1981, Proceedings of the Royal Society of London. Series B, Biological sciences,
R Llinás, and I Z Steinberg, and K Walton
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
R Llinás, and I Z Steinberg, and K Walton
August 1990, Brain research,
R Llinás, and I Z Steinberg, and K Walton
January 1985, Proceedings of the National Academy of Sciences of the United States of America,
R Llinás, and I Z Steinberg, and K Walton
October 1978, The Journal of general physiology,
Copied contents to your clipboard!