Some properties of spinal gamma-motoneurones in the cat, determined by micro-electrode recording. 1978

R E Kemm, and D R Westbury

1. Micro-electorde recordings were made from motoneurones in the lumbo-sacral region of the cat spinal cord whose axonal conduction velocities were 10--55 m/sec. Most of these may be presumed to be fusimotor in function. 2. Intracellular records from twelve gamma-motoneurones revealed six with short (2--4 msec) and six with long (30--100 msec) duration after-hyperpolarizations following an antidromically conducted action potential. 3. Using extracellular recording, the excitability of eighty-nine other gamma-motoneurones following an antidromic impulse was tested with a second antidromic action potential. In eighty-four of these neurones, the minimum antidromic response interval was short, 1.5--3.5 msec, implying that in most gamma-motoneurones, after-hyperpolarization was of limited effectiveness and of short duration. In the remaining five neurones, the minimum response interval was longer, 20--80 msec. 4. There was a lack of monosynaptic excitation from group 1 afferent axons in the dorsal roots in eleven of the twelve motoneurones from which intracellular records were obtained. Polysynaptic excitation was commonly observed. 5. In these anaesthetized preparations, there was a lack of recurrent i.p.s.p.s even though such evidence of Renshaw inhibition could be found in the neighbouring alpha-motoneurones. 6. The mean input resistance of gamma-motoneurones was shown to be 1.55 Momega and the principal time constant 8.5 msec by passing hyperpolarizing current through the recording micro-electrode in a bridge circuit. These values are open to error because of the small numbers of neurones investigated, and of the use of the single micro-electrode method. 7. Depolarizing current passed through the recording micro-electrode caused a maintained discharge of action potentials at a high rate. After-hyperpolarization had little effect on discharge rate. The threshold for injected current to cause discharge was very low, and the discharge rate increased rapidly with the magnitude of the current. 8. These properties of gamma-motoneurones arediscussed in relation to their function.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009047 Motor Neurons, Gamma Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length. Neurons, Fusimotor,Neurons, Gamma Motor,Gamma Motorneurons,Motor Neurons, Gamma-Efferent,Fusimotor Neuron,Fusimotor Neurons,Gamma Motor Neuron,Gamma Motor Neurons,Gamma Motorneuron,Gamma-Efferent Motor Neuron,Gamma-Efferent Motor Neurons,Motor Neuron, Gamma,Motor Neuron, Gamma-Efferent,Motor Neurons, Gamma Efferent,Motorneuron, Gamma,Motorneurons, Gamma,Neuron, Fusimotor,Neuron, Gamma Motor,Neuron, Gamma-Efferent Motor,Neurons, Gamma-Efferent Motor
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential

Related Publications

R E Kemm, and D R Westbury
July 1966, The Journal of physiology,
R E Kemm, and D R Westbury
December 1984, The Journal of physiology,
R E Kemm, and D R Westbury
January 1982, Experimental brain research,
R E Kemm, and D R Westbury
April 1982, The Journal of physiology,
R E Kemm, and D R Westbury
August 1952, The Journal of physiology,
R E Kemm, and D R Westbury
January 1969, Federation proceedings,
R E Kemm, and D R Westbury
June 1974, The Journal of physiology,
R E Kemm, and D R Westbury
October 1973, Neuropharmacology,
Copied contents to your clipboard!