Extracellular potassium activity during frequency-dependent conduction block of giant axons in the metathoracic ganglion of the cockroach. 1981

Y Grossman, and M J Gutnick

In the metathoracic ganglion (T3) of the cockroach, extracellular potassium activity (aK) was measured with ion-sensitive microelectrodes and intracellular recordings were simultaneously made from giant axons (GAs) during high frequency stimulation of the connectives. Blockade of spike conduction through T3 was associated with intraganglionic aK rises of 0.2-0.5 mM, which were only 10% of the periaxonal aK rises suggested from GA depolarizations. When aK in the bath was increased 10-fold, GA conduction block during 1 Hz stimulation did not occur until much higher levels of aK and GA depolarization were achieved. The results suggest that glial sheaths surrounding GAs significantly impede K+ movement, and may thus prevent non-specific axonal interactions, and that stimulus-induced conduction block is not primarily due to K+-induced depolarization and consequent Na+-inactivation.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D003058 Cockroaches Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae. Blaberidae,Blattaria,Blattidae,Blattodea,Cryptocercidae,Dictyoptera,Polyphagidae,Cockroach,Blattarias,Blattodeas,Cockroache,Cockroachs,Dictyopteras
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

Y Grossman, and M J Gutnick
October 1970, The Journal of experimental biology,
Y Grossman, and M J Gutnick
November 1984, Journal of neurobiology,
Y Grossman, and M J Gutnick
October 1990, The American journal of physiology,
Y Grossman, and M J Gutnick
January 1974, Journal of neurobiology,
Y Grossman, and M J Gutnick
June 1996, Der Anaesthesist,
Y Grossman, and M J Gutnick
May 2006, Muscle & nerve,
Y Grossman, and M J Gutnick
May 2006, Muscle & nerve,
Y Grossman, and M J Gutnick
December 1946, The Anatomical record,
Copied contents to your clipboard!