Short-term fluctuations in the concentration of cortisol and progesterone in fetal plasma, maternal plasma, and amniotic and allantoic fluids from sheep during late pregnancy. 1981

J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power

Fluctuations in the concentrations of cortisol and progesterone in fetal plasma, maternal plasma, and amniotic and allantoic fluids were measured in samples taken at 10-min intervals over a 90-min period from three groups of sheep sampled at different times during late pregnancy. During the last 30 days of gestation there was a significant rise in the mean concentration of cortisol in fetal plasma and amniotic fluid and a significant correlation between the cortisol concentration in these two fluids. The concentration of cortisol in allantoic fluid exceeded that in amniotic fluid. The concentration of cortisol in fetal plasma varied in a pulsatile manner, however the coefficient of variation (CV) within animals was greater (36%) on days -11 to -20, relative to the day of parturition (day 0), than on days -21 to -30 or days -5 to 0(15-19%). The CV values for cortisol in amniotic fluid and maternal plasma during the last 30 days of pregnancy were 20-50% and two at five times greater than the intraassay CV. The concentration of progesterone in amniotic fluid increased after day -20 but was not correlated with that in maternal plasma or fetal plasma. The concentrations of progesterone in paired samples of amniotic fluid and allantoic fluid were similar. The CV values for progesterone (18-34%) were similar in fetal and maternal plasma and amniotic fluid and did not change significantly during late pregnancy. Changes in the concentration of progesterone were unrelated to changes in cortisol. Interpretation of steroid profiles in fetal plasma and fluids through late pregnancy should take into account these short-term fluctuations in hormone concentrations.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D005260 Female Females
D005312 Fetal Blood Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery. Cord Blood,Umbilical Cord Blood,Blood, Cord,Blood, Fetal,Blood, Umbilical Cord,Bloods, Cord,Bloods, Fetal,Bloods, Umbilical Cord,Cord Blood, Umbilical,Cord Bloods,Cord Bloods, Umbilical,Fetal Bloods,Umbilical Cord Bloods
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000482 Allantois An extra-embryonic membranous sac derived from the YOLK SAC of REPTILES; BIRDS; and MAMMALS. It lies between two other extra-embryonic membranes, the AMNION and the CHORION. The allantois serves to store urinary wastes and mediate exchange of gas and nutrients for the developing embryo. Allantoic Membrane,Membrane, Allantoic
D000653 Amniotic Fluid A clear, yellowish liquid that envelopes the FETUS inside the sac of AMNION. In the first trimester, it is likely a transudate of maternal or fetal plasma. In the second trimester, amniotic fluid derives primarily from fetal lung and kidney. Cells or substances in this fluid can be removed for prenatal diagnostic tests (AMNIOCENTESIS). Amniotic Fluid Index,Amniotic Fluid Indices,Amniotic Fluids,Fluid Index, Amniotic,Fluid Indices, Amniotic,Fluid, Amniotic,Fluids, Amniotic,Index, Amniotic Fluid,Indices, Amniotic Fluid

Related Publications

J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
August 1985, The Journal of endocrinology,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
November 1974, Journal of reproduction and fertility,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
January 1984, Comparative biochemistry and physiology. B, Comparative biochemistry,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
November 1974, Journal of reproduction and fertility,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
November 1975, Pediatric research,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
March 1984, Journal of reproduction and fertility,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
July 1977, Research in veterinary science,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
March 1973, Research in veterinary science,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
November 1991, DTW. Deutsche tierarztliche Wochenschrift,
J R Challis, and J E Patrick, and J Cross, and J Workewych, and E Manchester, and S Power
November 1974, Endocrinology,
Copied contents to your clipboard!