The effect of changes in muscle function and bone growth on muscle migration. 1981

P G Grant, and P H Buschang, and D W Drolet, and C Pickerell

The elastic sleeve model of the periosteum of a long bone presents the periosteum as a structure which, because it is attached to the epiphyses rather than the diaphysis, expands interstitially and equally at all points as the bone grows at its ends. Structures attached to the periosteum are seen as essentially passive hitchhikers on the expanding periosteum. Two corollaries of this model are tested here. First, that changes in the magnitude or direction of the force that an attached structure exerts on the periosteum do not affect the migration of the structure. Second, that changes in the proportion of growth that occur at each end of the bone do not affect the migration of attached structures. Experiments performed on rabbits to test these corollaries include muscle paralysis, muscle transection, changes in the direction pull of a muscle, and epiphysiodesis. The results are in agreement with the hypotheses. This model should have applicability to functional and comparative anatomy, since it postulates that differences in positions of attachment of muscles and ligaments to bones reflect underlying genetic differences (phylogeny) rather than the effects of differences in behavior of the animal (ontogeny).

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010521 Periosteum Thin outer membrane that surrounds a bone. It contains CONNECTIVE TISSUE, CAPILLARIES, nerves, and a number of cell types.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001846 Bone Development The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS. Bone Growth
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular

Related Publications

P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
February 1958, The American journal of physiology,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
July 1966, American journal of orthodontics,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
January 1955, Acta medica Scandinavica. Supplementum,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
December 1965, The Journal of nutrition,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
January 1998, Gerontology,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
February 1993, The Anatomical record,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
December 1984, Nihon Kyosei Shika Gakkai zasshi = The journal of Japan Orthodontic Society,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
July 2021, Investigative ophthalmology & visual science,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
September 1978, Journal of anatomy,
P G Grant, and P H Buschang, and D W Drolet, and C Pickerell
May 1995, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!