Neuronal types in the deep dorsal cochlear nucleus of the cat: I. Giant neurons. 1981

E S Kane, and S G Puglisi, and B S Gordon

Large or "giant" neurons (average somatic diameter greater than 22 micron) of the dorsal cochlear nucleus (DCN) have been carefully described in this light (LM) and electron (EM) microscopic study of normal Nissl-stained and Golgi-impregnated cat brain stems. These neurons can be roughly classed by somatic shape (width:length ratio = r) as elongate (r less than 0.65), ovoid (0.65 less than or equal to r less than 0.75), or spherical (0.75 less than or equal to r less than or equal to 1.0) in Nissl-stained sections. However, orientation and location of somata, size, number, and distribution of basal dendrites and other cytological features seen in Nissl material provided five, easily recognized classes of large neurons: elongate bipolar, elongate multipolar, globular, radiate, and oriented multipolar giant cells. Further cytological details of the dendritic tree and axonal morphology of these neurons, observed in rapid Golgi impregnations of cat and kitten brain stems, extended these descriptive categories of giant neurons. These same deep DCN giant cells were identified in thick plastic sections and in subsequent thin sections. Thin sections showed further neuronal distinctions by relative density of somatic and dendritic synaptic inputs. All giant cells have dense synaptic inputs to basal and primary dendrites but only elongate multipolar and radiate giant cell somata have nearly continuous synaptic coverage of somata. Many axodendritic terminals and some axosomatic endings resemble cochlear endings as identified on fusiform cells of the DCN. Nauta preparations after ipsilateral cochlear ablations have confirmed (1) cochlear input to all giant cell types and (2) different patterns of input to each type. Hence, each giant cell type must process incoming auditory signals, but each cell must receive slightly different primary information. Since some giant cells of each type had observable axons heading into the dorsal acoustic stria, they must all carry encoded primary information to higher auditory centers.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003056 Cochlear Nerve The cochlear part of the 8th cranial nerve (VESTIBULOCOCHLEAR NERVE). The cochlear nerve fibers originate from neurons of the SPIRAL GANGLION and project peripherally to cochlear hair cells and centrally to the cochlear nuclei (COCHLEAR NUCLEUS) of the BRAIN STEM. They mediate the sense of hearing. Acoustic Nerve,Auditory Nerve,Acoustic Nerves,Auditory Nerves,Cochlear Nerves,Nerve, Acoustic,Nerve, Auditory,Nerve, Cochlear,Nerves, Acoustic,Nerves, Auditory,Nerves, Cochlear
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001306 Auditory Pathways NEURAL PATHWAYS and connections within the CENTRAL NERVOUS SYSTEM, beginning at the hair cells of the ORGAN OF CORTI, continuing along the eighth cranial nerve, and terminating at the AUDITORY CORTEX. Auditory Pathway,Pathway, Auditory,Pathways, Auditory
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

E S Kane, and S G Puglisi, and B S Gordon
August 1986, Journal of neurophysiology,
E S Kane, and S G Puglisi, and B S Gordon
October 1998, Neuroreport,
E S Kane, and S G Puglisi, and B S Gordon
February 1987, Journal of neurophysiology,
E S Kane, and S G Puglisi, and B S Gordon
August 1980, The Journal of comparative neurology,
E S Kane, and S G Puglisi, and B S Gordon
February 1995, Journal of neurophysiology,
E S Kane, and S G Puglisi, and B S Gordon
July 1975, The Journal of comparative neurology,
E S Kane, and S G Puglisi, and B S Gordon
June 1974, The Journal of comparative neurology,
E S Kane, and S G Puglisi, and B S Gordon
January 1966, Federation proceedings. Translation supplement; selected translations from medical-related science,
E S Kane, and S G Puglisi, and B S Gordon
June 1972, Experimental neurology,
E S Kane, and S G Puglisi, and B S Gordon
October 2007, Journal of neurophysiology,
Copied contents to your clipboard!