Fluidity properties and liquid composition of erythrocyte membranes in Chediak-Higashi syndrome. 1981

L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak

We have earlier shown through electron spin resonance (ESR) studies of leukocytes that membranes of cells from both Chediak-Higashi syndrome (CHS) mice and humans have abnormally high fluidity. We have extended our studied to erythrocytes. Erythrocytes were labeled with the nitroxide-substituted analogue of stearic acid, 2-(3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinyloxyl, and ESR spectra were obtained. Order parameter, S, at 23 degrees C, was 0.661 and 0.653 for erythrocytes of normal and CHS mice (P less than 0.001). S was 0.684 for normal human erythrocytes and 0.675 (P less than 0.001) for CHS erythrocytes at 25 degrees C. Because S varies inversely to fluidity, these results indicate that CHS erythrocytes tend to have higher fluidity than normal. In vitro treatment of both mice and human CHS erythrocytes with 10 mM ascorbate returned their membrane fluidity to normal. We prepared erythrocyte ghosts and extracted them with CHCl3:CH3OH (2:1). Gas-liquid chromatography analysis showed a greater number of unsaturated fatty acids for CHS. The average number of double bonds detected in fatty acids for mice on a standard diet was 1.77 for normal and 2.02 for CHS (P less than 0.04); comparison of human erythrocytes from one normal control and one CHS patient showed a similar trend. Our results suggest that an increased proportion of unsaturated fatty acids may contribute to increased fluidity of CHS erythrocytes. Our observation that both leukocytes and erythrocytes of CHS have abnormal fluidity indicates that CHS pathophysiology may relate to a general membrane disorder.

UI MeSH Term Description Entries
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002609 Chediak-Higashi Syndrome A form of phagocyte bactericidal dysfunction characterized by unusual oculocutaneous albinism, high incidence of lymphoreticular neoplasms, and recurrent pyogenic infections. In many cell types, abnormal lysosomes are present leading to defective pigment distribution and abnormal neutrophil functions. The disease is transmitted by autosomal recessive inheritance and a similar disorder occurs in the beige mouse, the Aleutian mink, and albino Hereford cattle. Chediak-Steinbrinck-Higashi Syndrome,Oculocutaneous Albinism with Leukocyte Defect,Chediak Higashi Syndrome,Chediak Steinbrinck Higashi Syndrome,Chediak-Steinbrinck-Higashi Syndromes
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
November 2000, Biochimica et biophysica acta,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
November 1982, Indian pediatrics,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
May 1977, Journal of periodontology,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
February 2006, Der Nervenarzt,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
March 1995, The Ceylon medical journal,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
November 2019, Archives of Iranian medicine,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
July 2023, Current opinion in hematology,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
May 1975, Proceedings of the Royal Society of Medicine,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
December 1958, Actualidad pediatrica; revista de bibliografia internacional,
L M Ingraham, and C P Burns, and L A Boxer, and R L Baehner, and R A Haak
January 1989, Indian journal of pediatrics,
Copied contents to your clipboard!