Cystic fibrosis ciliary dyskinesia substances and pulmonary disease. Effects of ciliary dyskinesia substances on neutrophil movement in vitro. 1981

G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd

Cultured mononuclear cells (MNC) from individuals homozygous or heterozygous for the defective gene causing the inherited disease cystic fibrosis (CF) synthesize three unusual "mediators" termed ciliary dyskinesia substances (CDS), which markedly affect tracheal mucociliary systems in vitro. MNC cultures from normal healthy controls do not accumulate any CDS, whereas MNC cultures from non-CF patients controls with pulmonary disease synthesized at least one CDS. The possible involvement of the CDS in pulmonary disease is being investigated. In this study, we sought to determine whether the CDS could be chemoattractants for polymorphonuclear neutrophils (PMN), since they have characteristics in common with known chemoattractants generated by alveolar macrophages. Our analyses of crude MNC culture supernates indicated that cultures from both CF genotypes accumulate significantly higher levels of PMN chemoattractants than do analogous cultures from normal healthy controls. CF homozygote MNC also generated more activity than MNC from patient controls with chronic pulmonary disease. Fractionation of MNC culture supernates by gel permeation chromatography and characterization of active fractions demonstrated six distinct PMN chemoattractants in cultures from CF genotypes; five were also present in patient control and four in normal healthy control cultures. The excessive chemoattractant activity in MNC cultures from CF genotypes and patient controls was due to several different substances produced by monocytes: (a) two components of 1,000-3,500 mol wt. (b) two fragments of C5, and (c) a fragment of C3. One C5 fragment had ciliary dyskinesia activity, the other did not. The C3 fragment chemoattractant also had ciliary dyskinesia activity and was not found in MNC cultures from patient controls. A third CDS, Which is CF-specific (5,000 mol wt), was neither chemotactic not chemokinetic and did not inhibit random PMN migration; however, fractions containing this CF-specific CDS completely inhibited PMN chemotaxis in response to three different chemoattractants. We conclude that all of the CDS can potentially play a role in the pathophysiology of lung disease, as judged by their effects on PMN movement in vitro.

UI MeSH Term Description Entries
D008173 Lung Diseases, Obstructive Any disorder marked by obstruction of conducting airways of the lung. AIRWAY OBSTRUCTION may be acute, chronic, intermittent, or persistent. Obstructive Lung Diseases,Obstructive Pulmonary Diseases,Lung Disease, Obstructive,Obstructive Lung Disease,Obstructive Pulmonary Disease,Pulmonary Disease, Obstructive,Pulmonary Diseases, Obstructive
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002464 Cell Migration Inhibition Phenomenon of cell-mediated immunity measured by in vitro inhibition of the migration or phagocytosis of antigen-stimulated LEUKOCYTES or MACROPHAGES. Specific CELL MIGRATION ASSAYS have been developed to estimate levels of migration inhibitory factors, immune reactivity against tumor-associated antigens, and immunosuppressive effects of infectious microorganisms. Chemotaxis Inhibition,Chemotaxis Inhibitions,Inhibition, Chemotaxis,Inhibitions, Chemotaxis
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic
D002908 Chronic Disease Diseases which have one or more of the following characteristics: they are permanent, leave residual disability, are caused by nonreversible pathological alteration, require special training of the patient for rehabilitation, or may be expected to require a long period of supervision, observation, or care (Dictionary of Health Services Management, 2d ed). For epidemiological studies chronic disease often includes HEART DISEASES; STROKE; CANCER; and diabetes (DIABETES MELLITUS, TYPE 2). Chronic Condition,Chronic Illness,Chronically Ill,Chronic Conditions,Chronic Diseases,Chronic Illnesses,Condition, Chronic,Disease, Chronic,Illness, Chronic
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D003550 Cystic Fibrosis An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION. Mucoviscidosis,Cystic Fibrosis of Pancreas,Fibrocystic Disease of Pancreas,Pancreatic Cystic Fibrosis,Pulmonary Cystic Fibrosis,Cystic Fibrosis, Pancreatic,Cystic Fibrosis, Pulmonary,Fibrosis, Cystic,Pancreas Fibrocystic Disease,Pancreas Fibrocystic Diseases

Related Publications

G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
January 1977, Pediatric research,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
November 1980, The Journal of clinical investigation,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
July 2012, Thorax,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
December 2000, Otolaryngologic clinics of North America,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
January 2011, Pediatric research,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
November 2020, Pediatric pulmonology,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
December 2019, Pediatric pulmonology,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
March 2016, The European respiratory journal,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
April 2014, Chest,
G B Wilson, and H H Fudenberg, and M T Parise, and E Floyd
May 1973, Lancet (London, England),
Copied contents to your clipboard!