Fine structure of the electrotonic synapse of the lateral giant axons in a crayfish (Procambarus clarkii). 1978

G Zampighi, and F Ramón, and W Durán

The electrotonic synapse of lateral giant axons of the crayfish was studied by conventional thin sectioning. The most prominent membrane specialization observed in this synaptic region is the communicating junction. It is characterized by a close apposition of the two axonal membranes which are separated by a 4--5 nm wide gap. Other characteristics of the junction are an array of particles spaced about 20--22 nm apart and a row of vesicles symmetrically arranged at the cytoplasmic leaflets of each membrane. The communicating junction does not cover the entire surface of the electrotonic synapse. Indeed, we have found other specializations such as: finger-like Schwann cell processes extending between synaptic membranes, saccular invaginations of one synaptic membrane into its axon, and coated vesicles continuous with one of the membranes. In addition, large vesicular pieces of the communicating junctions, with their accompanying vesicles, appeared to extend deeply inside the axoplasm. The morphological appearance of the communicating junction is found to be different from the one reported for mammalian maculae communicans such as liver or heart muscle. This is surprising because, regardless of their morphological differences, both junctions seem to transmit electrotonically.

UI MeSH Term Description Entries
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013570 Synaptic Membranes Cell membranes associated with synapses. Both presynaptic and postsynaptic membranes are included along with their integral or tightly associated specializations for the release or reception of transmitters. Membrane, Synaptic,Membranes, Synaptic,Synaptic Membrane

Related Publications

G Zampighi, and F Ramón, and W Durán
December 1978, The Journal of cell biology,
G Zampighi, and F Ramón, and W Durán
December 1975, Science (New York, N.Y.),
G Zampighi, and F Ramón, and W Durán
March 1985, Bulletin of environmental contamination and toxicology,
G Zampighi, and F Ramón, and W Durán
January 1986, Nature,
G Zampighi, and F Ramón, and W Durán
April 1994, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
G Zampighi, and F Ramón, and W Durán
September 1980, Bulletin of environmental contamination and toxicology,
G Zampighi, and F Ramón, and W Durán
March 1990, Nucleic acids research,
Copied contents to your clipboard!