Metabolism of 2-acetylaminofluorene in primary rat hepatocyte cultures. 1981

S D Spilman, and J L Byard

Primary cultures of adult rat parenchymal hepatocytes were developed as an in vitro model to investigate the biochemical fate of 2-acetylaminofluorene (AAF), a potent hepatocarcinogen. More than 5 x 10(8) viable cells were routinely isolated by collagenase perfusion in rat liver; the cells were cultured 2-5 d on collagen-coated dishes in serum-free culture medium containing hormones and other factors to retard the decline of cytochrome P-450. All of 137 ng or 13.7 microgram AAF was metabolized in 21-24 h by 2 x 10(6) cultured hepatocytes in 4.0 ml defined medium. At the higher dose, water-soluble metabolites appeared at 70% of the rate of metabolism at the lower dose, which was 17 ng/h for the initial 4 h. As the parent compound was consumed, bound AAF residues were recovered with exhaustively extracted, trichloro-acetic acid-precipitated hepatocellular macromolecules, accounting for a maximum of 5% of the 137-ng dose. Addition of hormones to the culture medium stimulated the rate of appearance of water-soluble metabolites, AAF, correlating with the enhanced cytochrome P-450 levels of hormone-treated cells. Metabolism of AAF was diminished 50% during 3 h of incubation with 10(-4) M SKF 525A and 100% with 10(-3) M SKF 525A. At a dose of 40 microgram AAF per 2 X 10(6) cells, only 31% of the carcinogen was recovered from the culture medium as water-soluble products after 24 h; the cells were sown to be capable of metabolizing a subsequent 40-microgram dose at an undiminished rate, suggesting that saturation of metabolizing enzymes rather than toxicity occurred. These results support the validity of primary hepatocyte cultures as a model system for quantitative investigations of the biochemical fate of AAF in mammalian cells, and provide preliminary characterization of the cells' processes of detoxification and metabolic activation of a chemical carcinogen.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011335 Proadifen An inhibitor of drug metabolism and CYTOCHROME P-450 ENZYME SYSTEM activity. Propyladiphenin,Diethylaminoethyldiphenylpropyl Acetate,Proadifen Hydrochloride,SK&F-525-A,SK-525A,SKF-525-A,SKF-525A,Acetate, Diethylaminoethyldiphenylpropyl,Hydrochloride, Proadifen,SK 525A,SK&F 525 A,SK&F525A,SK525A,SKF 525 A,SKF525A
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015073 2-Acetylaminofluorene A hepatic carcinogen whose mechanism of activation involves N-hydroxylation to the aryl hydroxamic acid followed by enzymatic sulfonation to sulfoxyfluorenylacetamide. It is used to study the carcinogenicity and mutagenicity of aromatic amines. 2-Acetamidofluorene,Fluoren-2-ylacetamide,2-AAF,2-Fluorenylacetamide,AAF, Aminofluorene,Acetylaminofluorene,N-2-Fluorenylacetamide,N-Acetyl-2-Aminofluorene,2 Acetamidofluorene,2 Acetylaminofluorene,2 Fluorenylacetamide,Aminofluorene AAF,Fluoren 2 ylacetamide,N 2 Fluorenylacetamide,N Acetyl 2 Aminofluorene
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S D Spilman, and J L Byard
June 1985, Toxicology and applied pharmacology,
S D Spilman, and J L Byard
May 1995, Biochemical pharmacology,
S D Spilman, and J L Byard
December 1987, Cell biology and toxicology,
S D Spilman, and J L Byard
August 1988, Cell biology international reports,
S D Spilman, and J L Byard
January 1991, Methods in enzymology,
Copied contents to your clipboard!