Ion effects on the lac repressor--operator equilibrium. 1981

M D Barkley, and P A Lewis, and G E Sullivan

The effects of ions on the interaction of lac repressor protein and operator DNA have been studied by the membrane filter technique. The equilibrium association constant was determined as a function of monovalent and divalent cation concentrations, anions, and pH. The binding of repressor and operator is extremely sensitive to the ionic environment. The dependence of the observed equilibrium constant on salt concentration is analyzed according to the binding theory of Record et al. [Record, M. T., Jr., Lohman, T. M., & deHaseth, P. L. (1976) J. Mol. Biol. 107, 145]. The number of ionic interactions in repressor--operator complex is deduced from the slopes of the linear log-log plots. About 11 ionic interactions are formed between repressor and DNA phosphates at pH 7.4 and about 9 ionic interactions at pH 8.0, in reasonable agreement with previous estimates. A favorable nonelectrostatic binding free energy of about 9-12 kcal/mol is estimated from the extrapolated equilibrium constants at the 1 M standard state. The values are in good accord with recent results for the salt-independent binding of repressor core and operator DNA. The effects of pH on the repressor--operator interaction are small, and probably result from titration of functional groups in the DNA-binding site of the protein. For monovalent salts, the equilibrium constant is slightly dependent on cation type and highly dependent on anion type. At constant salt concentration, the equilibrium constant decreases about 10000-fold in the order CH3CO2- greater than or equal to F- greater than Cl- greater than Br- greater than NO3- greater than SCN- greater than I-. The wide range of accessible equilibrium constants provides a useful tool for in vitro studies of the repressor--operator interaction.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015636 Magnesium Chloride Magnesium chloride. An inorganic compound consisting of one magnesium and two chloride ions. The compound is used in medicine as a source of magnesium ions, which are essential for many cellular activities. It has also been used as a cathartic and in alloys. MgCl2,Chloride, Magnesium

Related Publications

M D Barkley, and P A Lewis, and G E Sullivan
February 1970, Journal of molecular biology,
M D Barkley, and P A Lewis, and G E Sullivan
January 1975, Progress in biophysics and molecular biology,
M D Barkley, and P A Lewis, and G E Sullivan
January 1972, Ciba Foundation symposium,
M D Barkley, and P A Lewis, and G E Sullivan
August 1978, Proceedings of the National Academy of Sciences of the United States of America,
M D Barkley, and P A Lewis, and G E Sullivan
February 1997, Current opinion in structural biology,
M D Barkley, and P A Lewis, and G E Sullivan
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
M D Barkley, and P A Lewis, and G E Sullivan
May 1972, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
M D Barkley, and P A Lewis, and G E Sullivan
June 2006, Proceedings of the National Academy of Sciences of the United States of America,
M D Barkley, and P A Lewis, and G E Sullivan
October 1981, Nucleic acids research,
M D Barkley, and P A Lewis, and G E Sullivan
July 1992, Journal of molecular biology,
Copied contents to your clipboard!