Effects of ventral tegmental area stimulation and microiontophoretic application of dopamine and norepinephrine on hypothalamic neurons. 1981

F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado

The effects of ventral tegmental area of Tsai (VTA) stimulation on lateral hypothalamic (LH), lateral preoptic area (LPA). and medial hypothalamic neuronal activity were determined in anesthetized rats. Recordings from 81 hypothalamic neurons indicate that stimulation produces predominantly decreases in hypothalamic neuron activity. Increase in activity due to VTA stimulation occurred less frequently. Following single rectangular pulse stimulation, 0.5 msec. 0-500 microA, short latency decreases in activity occurred. Longer latency increases in discharge frequency were also observed. Dose response relations were established for 56% of the LH neurons, 78% of the LPA neurons, and for 82% of the medial hypothalamic neurons following VTA stimulation. Decreases and in a few cases increases in activity seemed to involve only one or two synapses. Antidromic responses verified interconnections between the VTA and the hypothalamus and revealed relatively slow conduction velocities of 0.45 and 0.81 m/sec. The changes in discharge frequency which occurred following VTA stimulation were similar in direction to the effects of the direct microiontophoretic application of dopamine (DA) or norepinephrine (NE). Since DA increased or decreased while NE decreased discharge frequency, these microiontophoretic tests indicated that the shorter latency VTA stimulation induced increases in decreases in neural activity were associated with VTA dopaminergic neuron stimulation and that in some cases short and long latency decreases in neuronal activity were due to activation of VTA ventral bundle NE fibers of passage or to indirect polysynaptic mechanisms. Results demonstrate the interconnections between various regions of the hypothalamus and the VTA along the extent of the medial forebrain bundle (MFB). The cross-validation of neuroanatomical and various electrophysiological methods in establishing the nature of hypothalamic connections was discussed.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007478 Iontophoresis Therapeutic introduction of ions of soluble salts into tissues by means of electric current. In medical literature it is commonly used to indicate the process of increasing the penetration of drugs into surface tissues by the application of electric current. It has nothing to do with ION EXCHANGE; AIR IONIZATION nor PHONOPHORESIS, none of which requires current. Iontophoreses
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
September 2020, Physiology & behavior,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
July 2008, Brain research,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
November 1984, The Journal of pharmacology and experimental therapeutics,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
December 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
April 1987, Experimental neurology,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
April 1997, Sheng li xue bao : [Acta physiologica Sinica],
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
January 1993, Brain research. Brain research reviews,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
January 1988, Annals of the New York Academy of Sciences,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
August 2006, Journal of neurophysiology,
F C Barone, and M J Wayner, and W H Tsai, and I Zarco de Coronado
August 1986, The American journal of physiology,
Copied contents to your clipboard!