Re-innervation of ganglia transplanted to the neck from different levels of the guinea-pig sympathetic chain. 1981

D Purves, and W Thompson, and J W Yip

Thoracic and lumbar sympathetic ganglia from donor guinea-pigs were transplanted to the bed of an excised superior cervical ganglion in host animals. Homotopic transplants of superior cervical ganglia served as controls. In this way the same set of preganglionic axons (the cervical sympathetic trunk) was confronted with ganglia from different levels of the sympathetic chain. Re-innervation of the transplants was studied after 3-5 months. 1. Neurones in ganglia transplanted from different levels of the sympathetic chain were re-innervated to about the same over-all degree by the preganglionic axons of the host's cervical sympathetic trunk. Thus, the mean amplitude of post-synaptic potentials, the estimated number of innervating axons, and the number of spinal segments providing innervation to each neurone were similar in transplanted thoracic, lumbar and superior cervical ganglion cells. 2. Neurones in transplanted mid-thoracic ganglia, however, were re-innervated more frequently, and more strongly, by axons arising from more caudal thoracic segments than neurones in transplanted superior cervical ganglia. Stimulation of axons arising from the fourth thoracic spinal segment (T4), for example, elicited post-synaptic potentials that on average were twice as large in transplanted fifth thoracic ganglion cells as in transplanted superior cervical ganglion cells; conversely, axons arising from T1 re-innervated neurones in the superior cervical ganglion about 2-3 times more effectively than fifth thoracic ganglion cells. This difference in the re-innervation of the fifth thoracic and the superior cervical ganglion is in the same direction as (although less pronounced than) the normal difference in the segmental innervation of these ganglia. 3. Transplanted lumbar ganglia were also re-innervated more effectively by relatively caudal segments compared to re-innervated cervical ganglia, but this difference was no greater than that observed for transplanted thoracic ganglia. 4. We conclude that preganglionic axons can distinguish (or be distinguished by) ganglia derived from different levels of the sympathetic chain. Our findings are consistent with the view that ganglion cells have some permanent property that biases the innervation they receive.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001339 Autonomic Fibers, Preganglionic NERVE FIBERS which project from the central nervous system to AUTONOMIC GANGLIA. In the sympathetic division most preganglionic fibers originate with neurons in the intermediolateral column of the SPINAL CORD, exit via ventral roots from upper thoracic through lower lumbar segments, and project to the paravertebral ganglia; there they either terminate in SYNAPSES or continue through the SPLANCHNIC NERVES to the prevertebral ganglia. In the parasympathetic division the fibers originate in neurons of the BRAIN STEM and sacral spinal cord. In both divisions the principal transmitter is ACETYLCHOLINE but peptide cotransmitters may also be released. Autonomic Fiber, Preganglionic,Fiber, Preganglionic Autonomic,Fibers, Preganglionic Autonomic,Preganglionic Autonomic Fiber,Preganglionic Autonomic Fibers
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014184 Transplantation, Homologous Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals. Transplantation, Allogeneic,Allogeneic Grafting,Allogeneic Transplantation,Allografting,Homografting,Homologous Transplantation,Grafting, Allogeneic

Related Publications

D Purves, and W Thompson, and J W Yip
November 1999, The Journal of physiology,
D Purves, and W Thompson, and J W Yip
January 1980, The Journal of physiology,
D Purves, and W Thompson, and J W Yip
July 1969, The Journal of physiology,
D Purves, and W Thompson, and J W Yip
June 1994, The American journal of physiology,
D Purves, and W Thompson, and J W Yip
December 1972, The American journal of physiology,
D Purves, and W Thompson, and J W Yip
May 1976, The American journal of physiology,
D Purves, and W Thompson, and J W Yip
January 1951, Anatomischer Anzeiger,
D Purves, and W Thompson, and J W Yip
June 2017, The Journal of physiology,
D Purves, and W Thompson, and J W Yip
November 1971, Experimental neurology,
Copied contents to your clipboard!