Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein. 1981

R L Margolis, and C T Rauch

We have conducted preliminary investigations into the control of microtubule assembly in rat brain crude extract supernatants. The rationale for these experiments is that microtubules interact with many proteins and are undoubtedly subject to physiological control mechanisms that are lost during tubulin purification. A more complete understanding of the cellular regulation of microtubules must include the physiology of these proteins. Assembly can be monitored in rat brain crude extract high-speed supernatants by measuring the increase in solution turbidity. We find that assembly is maximal in both rate and extent in the absence of added nucleotide. Increasing concentrations of either adenosine 5'-triphosphate (ATP) or guanosine 5'-triphosphate (GTP) inhibit both initiation and elongation of microtubules. GTP appears necessary for assembly and is apparently replenished from an intrinsic energy source during the time course of the assembly reaction. Inhibition of GTP production prevents microtubule assembly, and addition of exogenous GTP will reverse the blockage. Enzymatic removal of GTP at steady state causes a rapid depolymerization to the cold-stable microtubule level. Both GTP production and microtubule assembly display periodic oscillatory maxima. Cold-stable microtubules, which are always present in rat brain crude extract preparations, are rapidly made labile by addition of ATP. Analysis of proteins in cold-stable and cold-labile microtubule fractions shows changes in protein phosphorylation but not in the microtubule-associated protein composition. The tentative conclusion is that the state of phosphorylation of a 64K protein, designated the "switch protein", determines the cold stability or lability, and therefore the dimer association and dissociation rates, of crude extract microtubules.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold

Related Publications

R L Margolis, and C T Rauch
January 1984, The International journal of biochemistry,
R L Margolis, and C T Rauch
January 1996, Neurochemistry international,
R L Margolis, and C T Rauch
July 1990, Journal of neurochemistry,
R L Margolis, and C T Rauch
August 2004, The Journal of biological chemistry,
R L Margolis, and C T Rauch
July 1991, Neuroscience letters,
R L Margolis, and C T Rauch
November 2009, Experimental & molecular medicine,
Copied contents to your clipboard!