Protection of rat liver 80 S ribosomes against ricin A chain inactivation by proteins extracted from rat liver and wheat germ ribosomal subunits with ammonium chloride/magnesium chloride. 1981

M S Chang, and L L Houston

Proteins extracted from wheat germ 60 S ribosomal subunits and rat liver 60 S and 40 S ribosomal subunits with 3 M NH4Cl/75 mM MgCl2 were able to prevent the ricin A chain-mediated inactivation of untreated 80 S rat liver ribosomes. The protection of polyphenylalanine synthetic capability of 80 S ribosomes was saturable and reached 100% protection in the presence of about 20 micrograms of extracted protein using a uniform set of assay conditions. No protection was observed using proteins extracted from wheat germ 40 S subunits or the core fraction of rat liver 60 S subunits or protein extracted from Escherichia coli ribosomes or ribosomal subunits. The conclusion that the protective effect of extracted 60 S subunit proteins was specific, was further strengthened by showing that unrelated proteins such as alpha-lactalbumin, bovine serum albumin and lysozyme, and polypeptides such as polylysine and poly(aspartic acid), also showed no protection. If 80 S ribosomes were first treated with ricin A chain and then incubated with proteins extracted from rat liver 60 S subunits, no protection was observed. Proteins extracted with NH4Cl/MgCl2 from 60 S rat liver subunits were applied to carboxymethylcellulose column equilibrated with 6 M urea. Stepwise elution with increasing concentrations of LiCl resulted in seven fractions. One fraction (D) contained most of the protective factor; one fraction (E) contained a lesser amount of the protective factor. Two-dimensional polyacrylamide gel electrophoresis of fraction D showed the presence of ten proteins. These data are consistent with the idea that the enzymatic target of ricin A chain is protein is nature and that fraction D contains one or more proteins that appear to act as a inhibitor against ricin A chain.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D000643 Ammonium Chloride An acidifying agent that has expectorant and diuretic effects. Also used in etching and batteries and as a flux in electroplating. Sal Ammoniac,Ammoniac, Sal,Chloride, Ammonium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012276 Ricin A protein phytotoxin from the seeds of Ricinus communis, the castor oil plant. It agglutinates cells, is proteolytic, and causes lethal inflammation and hemorrhage if taken internally. Castor Bean Lectin,Lectin, Castor Bean,Lectin, Ricinus,Ricin Toxin,RCA 60,RCA60,Ricin A Chain,Ricin B Chain,Ricin D,Ricin I,Ricinus Toxin,A Chain, Ricin,B Chain, Ricin,Ricinus Lectin,Toxin, Ricin,Toxin, Ricinus
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

M S Chang, and L L Houston
January 1971, Acta biochimica Polonica,
M S Chang, and L L Houston
November 1986, FEBS letters,
M S Chang, and L L Houston
January 1978, Journal of supramolecular structure,
M S Chang, and L L Houston
August 1977, Archives of biochemistry and biophysics,
M S Chang, and L L Houston
November 1976, Archives of biochemistry and biophysics,
M S Chang, and L L Houston
June 1979, Biochemistry,
Copied contents to your clipboard!