Calcium-dependent action potentials in mouse spinal cord neurons in cell culture. 1981

E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson

Following blockade of membrane potassium conductance with tetraethylammonium ions or 3-aminopyridine, long-duration action potentials were recorded from mouse spinal cord neurons in primary dissociated cell culture. The action potentials were calcium-dependent since they: (1) were not blocked by the sodium-channel blocker tetrodotoxin, (2) could be recorded in sodium-free, calcium-containing medium (3) could not be evoked in sodium-containing, calcium-free medium, (4) were blocked by calcium channel blockers manganese and cobalt and (5) had overshoot amplitudes that varied linearly with the log of the extracellular calcium concentration (slope of 27.5 mV/decade change in calcium concentration).

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
June 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
January 2000, Epilepsia,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
November 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
December 1983, The Journal of pharmacology and experimental therapeutics,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
May 1982, Brain research,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
January 1993, European journal of pharmacology,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
February 1988, The Journal of pharmacology and experimental therapeutics,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
December 1980, Proceedings of the National Academy of Sciences of the United States of America,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
September 1985, Molecular pharmacology,
E J Heyer, and R L MacDonald, and G K Bergey, and P G Nelson
July 1982, Brain research,
Copied contents to your clipboard!