Estimates of cellular mechanics in an arterial smooth muscle. 1978

S P Driska, and D N Damon, and R A Murphy

Estimates of force generation or shortening obtained from smooth muscle tissues are valid for individual cells only if each cell is contracting homogeneously and if cells anatomically arranged in series are mechanically coupled. These two assumptions were tested and shown to be valid for the pig carotid media under certain conditions. Homogeneity of cellular responses in carotid strips was estimated from the motion of markers on the tissue during K+ -induced isometric contractions. When tissues were stretched to L0 (the optimum length for force generation), there was little marker movement on stimulation. However, considerable marker movement was observed on stimulation at shorter muscle lengths, reflecting localized shortening or stretching. The mechanical coupling of the very small cells in the media was determined by measuring the dependence of cell length on tissue length. Tissues were fixed with glutaraldehyde during isometric contractions at various tissue lengths (0.4--1.1 x L0). The fixed tissues were macerated with acid and the lengths of the dispersed cells were measured. Cell lengths were broadly distributed at all muscle lengths. However, the direct proportionality between mean cell length and muscle length (as a fraction of L0) indicated that cells which are anatomically in series are coupled force-transmitting structures. We conclude that valid estimates of cellular mechanical function in this preparation can be obtained from tissue measurements at lengths greater than about 0.9L0.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

S P Driska, and D N Damon, and R A Murphy
September 1986, The American journal of physiology,
S P Driska, and D N Damon, and R A Murphy
January 1979, Basic research in cardiology,
S P Driska, and D N Damon, and R A Murphy
December 1978, The American journal of physiology,
S P Driska, and D N Damon, and R A Murphy
July 1976, The American journal of physiology,
S P Driska, and D N Damon, and R A Murphy
September 2004, American journal of physiology. Heart and circulatory physiology,
S P Driska, and D N Damon, and R A Murphy
December 2015, Comprehensive Physiology,
S P Driska, and D N Damon, and R A Murphy
September 1975, The American journal of physiology,
S P Driska, and D N Damon, and R A Murphy
January 1990, Journal of applied physiology (Bethesda, Md. : 1985),
S P Driska, and D N Damon, and R A Murphy
August 1985, Experientia,
Copied contents to your clipboard!