Studies on in vitro metabolism of acrylamide and related compounds. 1981

H Tanii, and K Hashimoto

The in vitro biotransformations of acrylamide and ten related compounds in the hepatic enzyme system of the mouse were studied in order to learn more about their toxic actions in vivo. Of nine analogues, which could be analyzed quantitatively by gas chromatography, seven compounds--N-tert-butylacrylamide, diacetone acrylamide, N,N-dimethylacrylamide, N-isobutoxymethylacrylamide,--were metabolized in microsomal enzymes with NADPH generating system. One or two metabolites from each of the seven compounds, except for N-isobutoxymethylacrylamide were detected by gas chromatography. The metabolite of N-isopropylacrylamide was identified as acrylamide by gas chromatography-mass spectrometry. The metabolite of N,N-dimethylacrylamide showed a RT value identical with and a mass spectrum similar to N-methylacrylamide. No metabolites from the other four compounds have yet been identified. Acrylamide and crotonamide did not seem to be metabolized in the same system. Phenobarbital pretreatment of mice enhanced the metabolic reactions of the seven compounds, but did not elevate those of acrylamide and crotonamide. The Km value of N-isopropylacrylamide was 0.35 mM, which was the smallest of all the test analogues. All of the eleven analogues studied were found to be metabolized by hepatic glutathione S-transferases as well. This reaction was also elevated by the phenobarbital treatment of mice. The relationships between the in vitro metabolisms and the in vivo toxicities of acrylamide analogues are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000178 Acrylamides Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.

Related Publications

H Tanii, and K Hashimoto
January 1989, Journal of pharmaceutical and biomedical analysis,
H Tanii, and K Hashimoto
September 1985, Archives of toxicology,
H Tanii, and K Hashimoto
November 1974, Biochemical pharmacology,
H Tanii, and K Hashimoto
May 1956, The Journal of pharmacology and experimental therapeutics,
H Tanii, and K Hashimoto
April 1970, British journal of industrial medicine,
H Tanii, and K Hashimoto
January 1946, Archives of biochemistry,
H Tanii, and K Hashimoto
July 1969, Food and cosmetics toxicology,
Copied contents to your clipboard!