Compartmentation in amino acid transport across the blood brain barrier. 1981

S Samuels, and S A Schwartz

Under steady-state conditions, the transport rates for amino acids from blood to brain have been found to be about half that seen using the intraarterial injection technique. Using a method that mathematically mimics the constant infusion procedure, we were able to reconcile this apparent discrepancy. At less than 1 min after subcutaneous injection of [14C]tyrosine in mice, we have observed a rate of entry into brain of 19.7 nmol/g/min, while from 1-15 min we have measured the rate at 6.4 nmol/g/min. Using methionine sulfoximine as an inhibitor of the gamma-glutamyl cycle, the early rate was reduced to 10.0 nmol/g/min and the later rate to 3.7 nmol/g/min. These data are consistent with a two-compartment system regulating amino acid transport into the neurons. A mathematical model fit to these data indicates that the first compartment contains 8.3 nanomoles of tyrosine per gram brain or about 6.7% of the brain total. It is speculated that the first compartment consists primarily of the astrocytes.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014443 Tyrosine A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin. L-Tyrosine,Tyrosine, L-isomer,para-Tyrosine,L Tyrosine,Tyrosine, L isomer,para Tyrosine

Related Publications

S Samuels, and S A Schwartz
November 1987, Journal of neurochemistry,
S Samuels, and S A Schwartz
July 1983, The American journal of physiology,
S Samuels, and S A Schwartz
May 1992, The American journal of physiology,
S Samuels, and S A Schwartz
October 1979, Journal of neurochemistry,
S Samuels, and S A Schwartz
January 2020, Frontiers in physiology,
S Samuels, and S A Schwartz
January 1983, Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie,
S Samuels, and S A Schwartz
January 1977, Journal of neurochemistry,
S Samuels, and S A Schwartz
May 1992, European journal of pharmacology,
S Samuels, and S A Schwartz
March 1995, Journal of neurochemistry,
Copied contents to your clipboard!