Nucleotide sequence of cytoplasmic initiator tRNA from Tetrahymena thermophila. 1981

Y Kuchino, and T Mita, and S Nishimura

The total primary structure of cytoplasmic initiator tRNA from Tetrahymena thermophila mating type IV, was determined by post labeling techniques. The sequence is pa-G-C-A-G-G-G-U-m1G-G-C-G-A-A-A-D-Gm-G-A-A-U-C-G-C-G-U-Psi-G-G-G-C-U-C-A-U-t6A -A-C-Psi-C-A-A-A-A-m7G-U-m5C-A-G-A-G-G-A-Psi-C-G-m1A-A-A-C-C-U-C-U-C-U-C-U-G-C- U-A-C-C-AOH. The nucleotide residue in the position next to the 5'-end of the anticodon of this tRNA (residue No. 33) is uridine instead of cytidine, which has been found in cytoplasmic initiator tRNAs from multicellular eukaryotic organisms. The sequence of three consecutive G-C base pairs in the anticodon stem common to all other cytoplasmic initiator tRNAs is disrupted in this tRNA; namely, the cytidine at residue 40 in this region is replaced by pseudouridine in Tetrahymena initiator tRNA.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013768 Tetrahymena A genus of ciliate protozoa commonly used in genetic, cytological, and other research. Tetrahymenas

Related Publications

Y Kuchino, and T Mita, and S Nishimura
December 1977, Nucleic acids research,
Y Kuchino, and T Mita, and S Nishimura
February 1980, Nucleic acids research,
Y Kuchino, and T Mita, and S Nishimura
November 1975, Cell,
Y Kuchino, and T Mita, and S Nishimura
April 1991, Nucleic acids research,
Y Kuchino, and T Mita, and S Nishimura
November 1975, Cell,
Y Kuchino, and T Mita, and S Nishimura
June 1975, FEBS letters,
Y Kuchino, and T Mita, and S Nishimura
May 1984, Nucleic acids research,
Y Kuchino, and T Mita, and S Nishimura
May 1980, Journal of biochemistry,
Y Kuchino, and T Mita, and S Nishimura
August 1979, Nucleic acids research,
Y Kuchino, and T Mita, and S Nishimura
November 1982, Nucleic acids research,
Copied contents to your clipboard!