Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report. 1981

H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz

Incomplete spinal cord injuries occur as a result of contusion and mechanical compression of neural tissue. Anterior spinal cord compression may physiologically prevent optimal recovery of spinal cord function for varying periods of time. The aim of this research was to study an animal model of incomplete cervical cord injury with a spinal cord monitoring system utilizing computer-averaged cortical evoked potentials. Two animal models were utilized: a contusion injury by the weight drop method and an anterior cord compression injury. Results indicate that incomplete cord injuries of both types will recover depending upon the amount of initial force or energy applied and the length of time compression is applied. Thirteen compression and 14 contusion injuries were studied. Cortical evoked potentials measured in seventeen dogs paralleled the degree of cord injury as well as recovery.

UI MeSH Term Description Entries
D008991 Monitoring, Physiologic The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine. Patient Monitoring,Monitoring, Physiological,Physiologic Monitoring,Monitoring, Patient,Physiological Monitoring
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013117 Spinal Cord Compression Acute and chronic conditions characterized by external mechanical compression of the SPINAL CORD due to extramedullary neoplasm; EPIDURAL ABSCESS; SPINAL FRACTURES; bony deformities of the vertebral bodies; and other conditions. Clinical manifestations vary with the anatomic site of the lesion and may include localized pain, weakness, sensory loss, incontinence, and impotence. Conus Medullaris Syndrome,Myelopathy, Compressive,Extramedullary Spinal Cord Compression,Spinal Cord Compression, Extramedullary,Compression, Spinal Cord,Compressions, Spinal Cord,Compressive Myelopathy,Conus Medullaris Syndromes,Spinal Cord Compressions,Syndrome, Conus Medullaris,Syndromes, Conus Medullaris
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy

Related Publications

H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
August 2012, Archives of physical medicine and rehabilitation,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
June 1983, Surgical neurology,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
October 1996, Spinal cord,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
November 1997, Spinal cord,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
December 2022, Journal of applied physiology (Bethesda, Md. : 1985),
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
November 2014, Journal of neurotrauma,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
January 2023, Journal of physical therapy science,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
December 2011, Translational stroke research,
H H Bohlman, and E Bahniuk, and G Field, and G Raskulinecz
April 1997, The journal of spinal cord medicine,
Copied contents to your clipboard!