Biological effects of staphylococcal enterotoxin A on human peripheral lymphocytes. 1978

M P Langford, and G J Stanton, and H M Johnson

The mitogenicity, ability to induce immune interferon, and relationship between interferon synthesis and cell proliferative response were studied using human peripheral lymphocytes stimulated by staphylococcal enterotoxin A (SEA), phytohemagglutinin-P (PHA-P), and concanavalin A (ConA). Maximum cell proliferative responses ([(3)H]thymidine incorporation) and protein synthesis ((14)C-amino acid incorporation) occurred on days 3 and 4, respectively, after stimulation by each of the three mitogens. Maximal immune interferon levels were found 3 or 4 days after mitogen stimulation. SEA-treated cultures produced approximately three times more interferon than did cultures stimulated with PHA-P or ConA. Furthermore, SEA stimulated maximal cell proliferation over a much broader concentration range than did PHA-P and ConA (SEA, 10(-5) to 10(2) mug/ml; PHA-P, 10(1) to 10(2) mug/ml; ConA, 10(1) to 10(1.5) mug/ml). Interferon was also produced at maximal or near maximal levels over a broad concentration range of SEA (10(-2) to 10(2) mug/ml). Also, we found that inhibition of mitogen-induced DNA and protein synthesis to control levels by mitomycin C or cytosine arabinoside partially reduced interferon production. The DNA inhibitor studies indicate that immune interferon synthesis occurs maximally in association with at least some proliferative response and that submaximal levels of interferon production occur in mitogen-treated cultures in the absence of detectable proliferation. The ability of SEA to stimulate maximal DNA and immune interferon synthesis at concentrations of 3.5 x 10(-13) M and 3.5 x 10(-10) M, respectively, puts it in a potency range similar to that of hormones. Thus, SEA may play an important role in gut immunity and Staphylococcus aureus infections at concentrations well below those required for emetic effects.

UI MeSH Term Description Entries
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004768 Enterotoxins Substances that are toxic to the intestinal tract causing vomiting, diarrhea, etc.; most common enterotoxins are produced by bacteria. Staphylococcal Enterotoxin,Enterotoxin,Staphylococcal Enterotoxins,Enterotoxin, Staphylococcal,Enterotoxins, Staphylococcal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001427 Bacterial Toxins Toxic substances formed in or elaborated by bacteria; they are usually proteins with high molecular weight and antigenicity; some are used as antibiotics and some to skin test for the presence of or susceptibility to certain diseases. Bacterial Toxin,Toxins, Bacterial,Toxin, Bacterial
D013211 Staphylococcus aureus Potentially pathogenic bacteria found in nasal membranes, skin, hair follicles, and perineum of warm-blooded animals. They may cause a wide range of infections and intoxications.

Related Publications

M P Langford, and G J Stanton, and H M Johnson
May 1984, Infection and immunity,
M P Langford, and G J Stanton, and H M Johnson
December 1970, Journal of immunology (Baltimore, Md. : 1950),
M P Langford, and G J Stanton, and H M Johnson
January 1983, The International journal of biochemistry,
M P Langford, and G J Stanton, and H M Johnson
May 2022, Nanomaterials (Basel, Switzerland),
M P Langford, and G J Stanton, and H M Johnson
September 1964, Toxicology and applied pharmacology,
M P Langford, and G J Stanton, and H M Johnson
September 2006, Journal of veterinary science,
M P Langford, and G J Stanton, and H M Johnson
January 1997, The Journal of veterinary medical science,
M P Langford, and G J Stanton, and H M Johnson
October 1994, International journal of radiation biology,
M P Langford, and G J Stanton, and H M Johnson
May 1984, Infection and immunity,
Copied contents to your clipboard!