[Cooperative activity of adjacent visual cortex neurons in alert cats]. 1981

S Sh Rapoport, and I G Sil'kis

By means of auto- and crosscorrelation analysis, background activity of neighbouring neurones was studied in the visual cortex of alert cats. Four types of units differing in spike activity were found; each cortical microarea could consist of neurones of one or of different types. Analysis of configuration of mutual correlation histograms revealed four types of interdependent relations between the neighbouring neurones; definite types of spike activity of individual neurones were characteristic for each type of relations. Study of microsystems in which all or part of the neurones were united by the activity of a "common source" led to the assumption that the source was located outside the microsystems.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003344 Cortical Synchronization EEG phase synchronization of the cortical brain region (CEREBRAL CORTEX). Cortical Desynchronization,Cortical Phase Desynchronization,Cortical Phase Synchronization,Cortical Desynchronizations,Cortical Phase Desynchronizations,Cortical Phase Synchronizations,Cortical Synchronizations,Desynchronization, Cortical,Desynchronizations, Cortical,Phase Desynchronization, Cortical,Phase Desynchronizations, Cortical,Phase Synchronization, Cortical,Phase Synchronizations, Cortical,Synchronization, Cortical,Synchronizations, Cortical
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

S Sh Rapoport, and I G Sil'kis
May 1982, Journal of neurophysiology,
S Sh Rapoport, and I G Sil'kis
July 2004, Brain research,
S Sh Rapoport, and I G Sil'kis
April 2002, Brain research,
S Sh Rapoport, and I G Sil'kis
January 2001, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
S Sh Rapoport, and I G Sil'kis
April 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Sh Rapoport, and I G Sil'kis
May 2007, Neuroscience letters,
S Sh Rapoport, and I G Sil'kis
January 1968, Science (New York, N.Y.),
S Sh Rapoport, and I G Sil'kis
January 1974, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
S Sh Rapoport, and I G Sil'kis
March 1989, Neuroscience letters,
S Sh Rapoport, and I G Sil'kis
January 1989, Neirofiziologiia = Neurophysiology,
Copied contents to your clipboard!