Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. 1981

H F Kaspar, and J M Tiedje, and R B Firestone

Acetylene inhibition and 13N methods were used to assay digested sludge for its potential to denitrify and to reduce nitrate to ammonium. At nitrate concentrations below 10 microM, the reduction of N2O to N2 was not inhibited by acetylene concentrations as high as 80 kPa, though at higher nitrate concentration acetylene was an effective inhibitor. NO, N2O, and N2 were produced immediately after addition of nitrate or nitrite, indicating that denitrifying enzymes were present. NO was maintained at a higher concentration of 2--5 nM, while nitrate or nitrite were being reduced, but this gas was depleted once the ionic N oxide substrates were exhausted. Acetylene had little effect on appearance and disappearance of NO. It was also noted that NO was readily consumed by chemical reactions in the anaerobic sludge. Added N2O was reduced without a lag, but pasteurized samples did not consume N2O although they produced it. Fresh digested sludge reduced 60--70% of the added 13NO3- to 13NH4+ with the rest of the NO3- -N presumably lost to denitrification. This agrees well with the nitrate partitioning observed by the acetylene inhibition method in which 30--40% of the NO3- -N was recovered as N2O. Denitrification capacity persisted in both digested sludge and a methanogenic enrichment culture which had been grown in a chemostat for 2.5 years with acetate and ammonium as the sole carbon and nitrogen source. This suggests that denitrifiers with capacities for alternative anaerobic energy metabolism may be more common than now known.

UI MeSH Term Description Entries
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D009609 Nitrous Oxide Nitrogen oxide (N2O). A colorless, odorless gas that is used as an anesthetic and analgesic. High concentrations cause a narcotic effect and may replace oxygen, causing death by asphyxia. It is also used as a food aerosol in the preparation of whipping cream. Laughing Gas,Nitrogen Protoxide,Gas, Laughing,Oxide, Nitrous
D000644 Quaternary Ammonium Compounds Derivatives of ammonium compounds, NH4+ Y-, in which all four of the hydrogens bonded to nitrogen have been replaced with hydrocarbyl groups. These are distinguished from IMINES which are RN Quaternary Ammonium Compound,Ammonium Compound, Quaternary,Ammonium Compounds, Quaternary,Compound, Quaternary Ammonium
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D012722 Sewage Refuse liquid or waste matter carried off by sewers. Sludge,Sludge Flocs

Related Publications

H F Kaspar, and J M Tiedje, and R B Firestone
July 2023, Environmental science & technology,
H F Kaspar, and J M Tiedje, and R B Firestone
October 2011, Water research,
H F Kaspar, and J M Tiedje, and R B Firestone
October 1985, Applied and environmental microbiology,
H F Kaspar, and J M Tiedje, and R B Firestone
August 2018, Applied and environmental microbiology,
H F Kaspar, and J M Tiedje, and R B Firestone
March 2024, Global change biology,
H F Kaspar, and J M Tiedje, and R B Firestone
March 2022, Environmental science & technology,
H F Kaspar, and J M Tiedje, and R B Firestone
September 2018, Applied and environmental microbiology,
Copied contents to your clipboard!