Changes in posterior hypothalamic self-stimulation following experimental cerebral infarction in the rat. 1978

R G Robinson, and F E Bloom

Bioplar stimulating electrodes were placed bilaterally in the posterior hypothalamus of rats following which the animals were shaped for intracranial self-stimulation (ICSS). When ICSS rates were stable for 1 wk, the right middle cerebral artery was ligated. During the 25-day postinfarction period, the rate of ICSS at specified current values was compared with preoperative rates. At 2 days after operation, there was a 33% decrease in the maximum frequency of ipsilateral ICSS. However, by 8 days after experimental stroke, there was a 16% increase in the maximal rate of ICSS above the preoperative value, and the rate returned to control levels by 20 days after surgery. The minimum current necessary to elicit the maximal rate of response also changed in a biphasic manner, i.e., the minimum required current was greater than preoperative control levels until 8 days after operation but then dropped below control level until 20 days postoperatively. There were no changes in the current or rate of response in the contralateral electrode. These results are discussed in relation to what may be the underlying neurophysiological changes causing these biphasic alterations in ICSS.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007034 Hypothalamus, Posterior The part of the hypothalamus posterior to the middle region consisting of several nuclei including the medial maxillary nucleus, lateral mammillary nucleus, and posterior hypothalamic nucleus (posterior hypothalamic area). The posterior hypothalamic area is concerned with control of sympathetic responses and is sensitive to conditions of decreasing temperature and controls the mechanisms for the conservation and increased production of heat. Hypothalamic Region, Posterior,Posterior Hypothalamic Region,Area Hypothalamica Posterior,Hypothalamus Posterior,Mammillary Region,Posterior Hypothalamus,Posterior Periventricular Nucleus,Premammillary Nucleus,Supramammillary Commissure,Supramammillary Nucleus,Area Hypothalamica Posteriors,Commissure, Supramammillary,Commissures, Supramammillary,Hypothalamic Regions, Posterior,Hypothalamica Posterior, Area,Hypothalamica Posteriors, Area,Hypothalamus Posteriors,Mammillary Regions,Nucleus, Posterior Periventricular,Nucleus, Premammillary,Nucleus, Supramammillary,Periventricular Nucleus, Posterior,Posterior Hypothalamic Regions,Posterior, Area Hypothalamica,Posterior, Hypothalamus,Posteriors, Area Hypothalamica,Posteriors, Hypothalamus,Region, Mammillary,Region, Posterior Hypothalamic,Regions, Mammillary,Regions, Posterior Hypothalamic,Supramammillary Commissures
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002544 Cerebral Infarction The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction). Anterior Choroidal Artery Infarction,Cerebral Infarct,Infarction, Cerebral,Posterior Choroidal Artery Infarction,Subcortical Infarction,Cerebral Infarction, Left Hemisphere,Cerebral Infarction, Right Hemisphere,Cerebral, Left Hemisphere, Infarction,Cerebral, Right Hemisphere, Infarction,Infarction, Cerebral, Left Hemisphere,Infarction, Cerebral, Right Hemisphere,Infarction, Left Hemisphere, Cerebral,Infarction, Right Hemisphere, Cerebral,Left Hemisphere, Cerebral Infarction,Left Hemisphere, Infarction, Cerebral,Right Hemisphere, Cerebral Infarction,Right Hemisphere, Infarction, Cerebral,Cerebral Infarctions,Cerebral Infarcts,Infarct, Cerebral,Infarction, Subcortical,Infarctions, Cerebral,Infarctions, Subcortical,Infarcts, Cerebral,Subcortical Infarctions
D004056 Differential Threshold The smallest difference which can be discriminated between two stimuli or one which is barely above the threshold. Difference Limen,Just-Noticeable Difference,Weber-Fechner Law,Difference Limens,Difference, Just-Noticeable,Differences, Just-Noticeable,Differential Thresholds,Just Noticeable Difference,Just-Noticeable Differences,Law, Weber-Fechner,Limen, Difference,Limens, Difference,Threshold, Differential,Thresholds, Differential,Weber Fechner Law
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine

Related Publications

R G Robinson, and F E Bloom
December 1977, Life sciences,
R G Robinson, and F E Bloom
December 1992, The Japanese journal of psychiatry and neurology,
R G Robinson, and F E Bloom
January 1982, Acta physiologica Academiae Scientiarum Hungaricae,
R G Robinson, and F E Bloom
July 1972, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R G Robinson, and F E Bloom
March 1974, Experientia,
R G Robinson, and F E Bloom
February 1988, Archives of neurology,
R G Robinson, and F E Bloom
April 1967, Vascular diseases,
R G Robinson, and F E Bloom
November 1978, Brain research,
R G Robinson, and F E Bloom
January 2013, Case reports in neurological medicine,
Copied contents to your clipboard!