The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. 1981

D C Linden, and R W Guillery, and J Cucchiaro

The anterograde transport of 3H proline and of horseradish peroxidase has been used to study the retinogeniculate pathway in normal adult ferrets and in young ferrets during postnatal development. the lateral geniculate nucleus in adults shows a characteristic "carnivore" pattern, with layers A, A1, C, C1, C2, and C3, and a medial interlaminar nucleus recognizable either cytoarchitectonically or on the basis ofth retinogeniculate innervation. In addition, there is a well-defined, rather large perigeniculate nucleus. At birth the lateral geniculate nucleus is unlaminated and essentially all parts are reached by afferents from both eyes. The crossed component is by far the larger. It extends from the optic tract medially well into the perigeniculate field, in contrast to the uncrossed component which barely reaches the perigeniculate field. During the first 3 postnatal days the uncrossed fibers restrict their arbors to a small posterior and medial region, the precursor of the biocular segment of the nucleus. The crossed fibers gradually retreat from the region within which the uncrossed fibers have concentrated. Between the fourth and eighth postnatal days the field occupied by the ipsilateral component expands again to form a major focus that will define lamina A1 and a minor focus that will define C1. At this stage the crossed and the uncrossed fibers overlap at the borders of lamina A1 and the whole region of lamina C1 is also occupied by arbors of the crossed component. The perigeniculate field becomes clearly distinguishable from the lateral geniculate nucleus and the medial interlaminar nucleus is becoming clearly recognizable between days 3 and 8. Between days 8 and 15 the cytoarchitectonic borders between layers A and A1 become clearly defined, but the retinogeniculate axons from each eye still extend across this border. These axons retreat into their appropriate lamina after the 15th postnatal day an the nucleus reaches its essentially adult structure by about the fourth postnatal week. Segregation of retinofugal axons in the C layers occurs after segregation in the A layers, but many of the cells within the C layers show signs of cytological maturity earlier than those of the A layers. The nucleus undergoes a series of migrations and changes of shape as the ipsilateral and contralateral components become segregated. Whereas in teh newborn the nucleus is roughly comma-shaped and on the lateral aspect of the dorsal thalamus, in the adult it is "L"-shaped and mainly on the posterior aspect of the dorsal thalamus.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002335 Carnivora An order of MAMMALS, usually flesh eaters with appropriate dentition. Suborders include the terrestrial carnivores Fissipedia, and the aquatic carnivores CANIFORMIA.
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

D C Linden, and R W Guillery, and J Cucchiaro
January 1980, Experimental brain research,
D C Linden, and R W Guillery, and J Cucchiaro
August 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D C Linden, and R W Guillery, and J Cucchiaro
January 1986, Anatomy and embryology,
D C Linden, and R W Guillery, and J Cucchiaro
August 1986, Journal of neurophysiology,
D C Linden, and R W Guillery, and J Cucchiaro
April 1976, Anatomy and embryology,
D C Linden, and R W Guillery, and J Cucchiaro
February 1980, The Journal of comparative neurology,
D C Linden, and R W Guillery, and J Cucchiaro
January 1989, Journal fur Hirnforschung,
D C Linden, and R W Guillery, and J Cucchiaro
March 2004, Brain research. Developmental brain research,
D C Linden, and R W Guillery, and J Cucchiaro
March 1995, The Journal of comparative neurology,
D C Linden, and R W Guillery, and J Cucchiaro
February 1994, The Journal of comparative neurology,
Copied contents to your clipboard!