Molecular interpretation of kinetic-ionic strength effects. 1981

B A Feinberg, and M D Ryan

A recent and important approach to investigating electron transfer mechanisms of redox proteins has been through kinetic-ionic strength studies. There is, however, significant controversy as to whether such studies (1) yield information regarding the charge (or location) of the electron transfer site or (2) more simply reflect the influence of net or overall protein charge on the electrostatic interactions. A critical analysis using different theoretical approaches is made of our recent work and of the bulk of the published non-physiological small molecule-protein and protein-protein kinetic ionic strength studies; it is concluded that (1) the approximated Bronsted-Debye-Huckel equation can not be used at all for protein redox reactions, (2) irrespective of the theoretical approaches discussed, such studies do not provide information regarding the charge of the electron transfer site, (3) it is the net charge of the reactants that control the electrostatic interactions, (4) both the equation derived by Wherland and Gray and the full Bronsted-Debye-Huckel equation provide reasonably good approximations of net protein charge, (5) pH changes quantitatively modulate net protein charge, and (6) thus, protein redox rates need to be electrostatically corrected if relevant interpretations of kinetic-ionic strength experiments are to be made.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B A Feinberg, and M D Ryan
August 2003, Journal of pharmaceutical sciences,
B A Feinberg, and M D Ryan
January 1978, The International journal of biochemistry,
B A Feinberg, and M D Ryan
January 1996, Biochemistry,
B A Feinberg, and M D Ryan
August 2005, Biophysical journal,
B A Feinberg, and M D Ryan
November 2009, The journal of physical chemistry. A,
B A Feinberg, and M D Ryan
February 2006, The journal of physical chemistry. B,
B A Feinberg, and M D Ryan
March 2010, The European physical journal. E, Soft matter,
Copied contents to your clipboard!