Osmosensitivity of the hepatic portal vein area and vasopressin release in rats. 1981

A J Baertschi, and P G Vallet

1. The role of intraperitoneal osmoreceptors in hypothalamo-neurohypophyseal control was studied in urethane- or nembutal-anaesthetized rats. Plasma samples were taken for radioimmunoassay of arginine vasopressin, and the electrical activity of single supraoptic endocrine neurones and of the hypothalamo-neurohypophyseal tract were monitored during superfusion of the hepatic portal vein with hypo-, iso- and hypertonic solutions. 2. Plasma arginine vasopressin increased within 1 min following superfusion with 0.3-0.9 osmolal NaCl solutions in a dose-related manner from basal levels of 30 pg/ml, to 170 pg/ml. Prior superfusion with xylocaine or intravenous infusions of 800 micrograms atropine-methyl bromate abolished this response, although vasopressin was still released to nicotine in atropine-blocked rats. 3. Portal vein superfusions had no significant effects on arterial blood pressure, plasma osmolality and plasma Na concentrations. 4. Forty supraoptic neurones were antidromically activated from the neural lobe/stalk region. Superfusions of the portal vein with NaCl solutions (0.33-1.20 osmole/kg, 37 degrees C, 5-120 sec) stimulated seven out of eight phasically firing and eight out of twenty-four continuously firing neurones. One phasically active, ten continuously firing and four silent cells were not affected, and six continuously firing neurones were inhibited by the superfusions. 5. The amplitude decreases of antidromic compound action potentials in the hypothalamo-neurohypophyseal tract, reflecting an increase of the orthodromic nerve impulse traffic, ranged from 17 to 22% for superfusions with 1.2 osmolal NaCl or LiCl solutions, from 8 to 11% for 1.2 osmolal Na isethionate or choline Cl and from 3 to 9% for 1.2 osmolal glucose; there was no effect when 1.2 osmolal urea and isotonic or hypotonic NaCl solutions were applied. 6. Responses of the amplitude of compound action potentials to superfusions with 1.2 osmolal NaCl solutions or with 0.1 mumole ACh, but not to electrical stimulation of the portal vein or its superfusion with 1.2 osmolal KCl, were abolished by prior application of 0.3 mumole atropine sulphate. Prior superfusions with xylocaine abolished the responses to all stimuli above. 7. These results suggest that within the hepatic portal vein area there are osmosensitive receptor cells and/or nerve terminals which activate the hypothalamoneurohypophyseal system through a peripheral cholinergic mechanism.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011169 Portal Vein A short thick vein formed by union of the superior mesenteric vein and the splenic vein. Portal Veins,Vein, Portal,Veins, Portal
D002628 Chemoreceptor Cells Cells specialized to detect chemical substances and relay that information centrally in the nervous system. Chemoreceptor cells may monitor external stimuli, as in TASTE and OLFACTION, or internal stimuli, such as the concentrations of OXYGEN and CARBON DIOXIDE in the blood. Chemoreceptive Cells,Cell, Chemoreceptive,Cell, Chemoreceptor,Cells, Chemoreceptive,Cells, Chemoreceptor,Chemoreceptive Cell,Chemoreceptor Cell
D005260 Female Females
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin

Related Publications

A J Baertschi, and P G Vallet
February 1975, Journal of applied physiology,
A J Baertschi, and P G Vallet
September 1980, Nederlands tijdschrift voor geneeskunde,
A J Baertschi, and P G Vallet
May 1987, Yao xue xue bao = Acta pharmaceutica Sinica,
A J Baertschi, and P G Vallet
April 1998, Endocrinology,
A J Baertschi, and P G Vallet
January 1979, Medecine & chirurgie digestives,
A J Baertschi, and P G Vallet
April 1968, Bollettino della Societa italiana di biologia sperimentale,
A J Baertschi, and P G Vallet
January 1991, BMJ (Clinical research ed.),
A J Baertschi, and P G Vallet
August 1988, The American journal of physiology,
A J Baertschi, and P G Vallet
January 1993, Canadian journal of physiology and pharmacology,
A J Baertschi, and P G Vallet
January 1986, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!