Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 m KCl. 1978

D J Nelson, and J Ehrenfeld, and B Lindemann

Cells of isolated frog skin epithelium were observed microscopically during impalement with standard microelectrodes of 5 to 20 Momega resistance, filled with 3 m KCl. Impaled cells, as well as some neighboring cells, were seen to swell 10 to 100 sec after impalement, while the negative potential recorded by the microelectrode depolarized (open circuit conditions). Apparently, osmotic swelling of small epithelial cells may be caused by diffusion of KCl from such electrodes. This conclusion is supported by calculations quoted from the literature of KCl loss from microelectrodes. Intracellular recordings from epithelia with destructed cellular membranes gave negative "pre-tip potentials" of up to mV. The potentials could be altered by electrode movement, by decreasing the ambient pH or the tip-pH and by modifying the fixed charges of the tissue chemically. It is shown that even a moderate loss of KCl, which will not result in appreciable swelling, can produce negative potentials in front of the electrode tip if the protoplasm has a high density of negative fixed charges. We suggest the use of 3 m KCl electrodes with resistances above 30 Momega if after impalement compression of intracellular material by the tip can be avoided. Where such compression cannot be avoided, it is best to fill the microelectrode with an isotonic solution which mimics the electrolyte composition of the cytosol.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D011189 Potassium Chloride A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA. Slow-K,Chloride, Potassium
D004487 Edema Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE. Dropsy,Hydrops,Anasarca
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D012879 Skin Physiological Phenomena The functions of the skin in the human and animal body. It includes the pigmentation of the skin. Skin Physiological Processes,Skin Physiology,Physiology, Skin,Skin Physiological Concepts,Skin Physiological Phenomenon,Skin Physiological Process,Concept, Skin Physiological,Concepts, Skin Physiological,Phenomena, Skin Physiological,Phenomenas, Skin Physiological,Phenomenon, Skin Physiological,Phenomenons, Skin Physiological,Physiological Concept, Skin,Physiological Concepts, Skin,Physiological Phenomena, Skin,Physiological Phenomenas, Skin,Physiological Phenomenon, Skin,Physiological Phenomenons, Skin,Process, Skin Physiological,Processes, Skin Physiological,Skin Physiological Concept,Skin Physiological Phenomenas,Skin Physiological Phenomenons
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

D J Nelson, and J Ehrenfeld, and B Lindemann
March 1984, The American journal of physiology,
D J Nelson, and J Ehrenfeld, and B Lindemann
January 1981, The Journal of membrane biology,
D J Nelson, and J Ehrenfeld, and B Lindemann
November 1975, Biophysical journal,
D J Nelson, and J Ehrenfeld, and B Lindemann
December 1979, The Journal of membrane biology,
D J Nelson, and J Ehrenfeld, and B Lindemann
January 1970, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete,
D J Nelson, and J Ehrenfeld, and B Lindemann
December 1976, Nature,
D J Nelson, and J Ehrenfeld, and B Lindemann
January 1969, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
D J Nelson, and J Ehrenfeld, and B Lindemann
January 1986, Renal physiology,
D J Nelson, and J Ehrenfeld, and B Lindemann
March 1975, The Journal of surgical research,
D J Nelson, and J Ehrenfeld, and B Lindemann
January 1961, The Journal of general physiology,
Copied contents to your clipboard!