Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles. 1981

B R Lentz, and M Hoechli, and Y Barenholz

The phase behavior of mixtures of dimyristoylphosphatidylcholine (DMPC) with N-palmitoylsphingosinephosphorylcholine (C16SHP) has been investigated in both small unilamellar and large multilamellar vesicles. The steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) has been used to detect temperature-induced structural changes in these membranes. In addition, electron microscopy has revealed vastly different fracture-face morphologies for large multilamellar vesicles "jet-frozen" from different temperatures. These data have been interpreted in terms of proposed phase diagrams for this lipid mixture. The shapes of the proposed phase diagrams have led us to conclude that phosphatidylcholine and sphingomyelin species of similar acyl chain length mix freely in both highly curved and uncurved bilayers, except at temperatures at which both lipids are in low-temperature, ordered phases. In addition, the similarity of these phase diagrams to phase diagrams for analogous mixtures of pure phosphatidylcholines suggested that sphingomyelin and phosphatidylcholine suggested that sphingomyelin and phosphatidylcholine species might substitute for each other in supporting the lamellar phase necessary for each other in supporting the lamellar phase necessary to cell membrane structure. Finally, the anisotropy of DPH fluorescence was found to be essentially invariant with sphingomyelin content at temperatures just above and below the solid--liquid phase separation in small unilamellar vesicles. This demonstrates that the sphingomyelin backbone, per se, does not order the membrane bilayer. These results are discussed in terms of the possible role of sphingomyelin in controlling acyl chain order within mammalian cell membranes.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D004134 Dimyristoylphosphatidylcholine A synthetic phospholipid used in liposomes and lipid bilayers for the study of biological membranes. Dimyristoyllecithin,1,2-Dimyristoyl-glycero-3-phosphorylcholine,1,2-Ditetradecanoyl-glycero-3-phosphocholine,1,2-Ditetradecyl-glycero-3-phosphocholine,DMCP,DMPC,1,2 Dimyristoyl glycero 3 phosphorylcholine,1,2 Ditetradecanoyl glycero 3 phosphocholine,1,2 Ditetradecyl glycero 3 phosphocholine
D004161 Diphenylhexatriene A fluorescent compound that emits light only in specific configurations in certain lipid media. It is used as a tool in the study of membrane lipids. 1,6-Diphenyl-1,3,5-hexatriene,1,6-Diphenylhexatriene,1,6 Diphenylhexatriene
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin

Related Publications

B R Lentz, and M Hoechli, and Y Barenholz
November 1989, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
B R Lentz, and M Hoechli, and Y Barenholz
May 2004, Biophysical journal,
B R Lentz, and M Hoechli, and Y Barenholz
February 1989, Biochimica et biophysica acta,
B R Lentz, and M Hoechli, and Y Barenholz
March 2005, Journal of lipid research,
B R Lentz, and M Hoechli, and Y Barenholz
April 2016, The journal of physical chemistry. B,
B R Lentz, and M Hoechli, and Y Barenholz
September 2018, The journal of physical chemistry. B,
B R Lentz, and M Hoechli, and Y Barenholz
May 1983, Biochemistry,
Copied contents to your clipboard!