Specificity and plasticity of retinotectal connections: a computational model. 1981

V A Whitelaw, and J D Cowan

A computational model is presented which simulates the development and regeneration of orderly connections between retinal fibers and tectal cells in frogs and goldfish. The model distinguishes two aspects of retinotectal connectivity: (1) the contact adhesion between retinal fibers and tectal cells as mediated by fixed chemospecific markers and (2) the formation of modifiable synapses between them. Chemospecificity is assumed to be an intrinsic property of both the retina and tectum and is modeled as a graded distribution of a binding determinant or marker. Synapse formation depends upon the timing of neural activity as well as on the intinsic chemospecificity of retinotectal contacts. In addition to the normal development and regeneration of the retinotectal map, the model simulates the compressed, expanded, translocated, and rotated maps that have been found in surgically manipulated contexts. There examples of plasticity in the retinotectal map can be simulated without assuming any changes in the marker distributions. Moreover, the model demonstrates that a very shallow gradient of a single marker suffices to organize retinotectal connections in a variety of contexts.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

V A Whitelaw, and J D Cowan
April 1979, Neurosciences Research Program bulletin,
V A Whitelaw, and J D Cowan
April 1979, Neurosciences Research Program bulletin,
V A Whitelaw, and J D Cowan
January 1982, Bibliotheca anatomica,
V A Whitelaw, and J D Cowan
January 1978, Progress in clinical and biological research,
V A Whitelaw, and J D Cowan
January 1982, Current topics in developmental biology,
V A Whitelaw, and J D Cowan
September 1973, Proceedings of the National Academy of Sciences of the United States of America,
V A Whitelaw, and J D Cowan
January 1975, Ciba Foundation symposium,
V A Whitelaw, and J D Cowan
January 1977, Progress in clinical and biological research,
Copied contents to your clipboard!