Atropine-resistant depolarization in the guinea-pig small intestine. 1981

R A Bywater, and M E Holman, and G S Taylor

1. Junction potentials were recorded from the circular muscle cells of the guinea-pig ileum following transmural stimulation in the presence of atropine at 30 degrees C.2. Single stimuli produced a transient hyperpolarization, the inhibitory junction potential (i.j.p.). At high stimulus strengths the i.j.p. was followed by a post-stimulus depolarization (PSD).3. During repetitive stimulation the magnitude of the hyperpolarization decreased; however, at the end of the stimulus period the PSD was enhanced and often reached threshold for the generation of action potentials. Thus, the size of the PSD was not directly related to the degree of the preceding hyperpolarization.4. Hyperpolarization of the circular muscle cells was produced by the application of anodal current using large external electrodes. Rapid cessation of the applied current produced a transient after-depolarization which was shorter in time course than the PSD following the i.j.p. If the applied anodal current was reduced slowly (at a rate which mimicked the decrease in the hyperpolarization during repetitive nerve stimulation) no after-depolarization was observed.5. Conditioning hyperpolarization of the circular muscle cells reduced the amplitude of the i.j.p. The i.j.p. was reversed at membrane potentials greater than approximately -90 mV.6. The PSD did not appear to be due to the extracellular accumulation of potassium ions following the i.j.p. since the PSD persisted even when the i.j.p. was reversed.7. The neurotoxin apamin reversibly abolished the i.j.p. and unmasked a transient excitatory junction potential (e.j.p.) with a variable latency (350-900 ms).

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Bywater, and M E Holman, and G S Taylor
March 1973, The Journal of pharmacology and experimental therapeutics,
R A Bywater, and M E Holman, and G S Taylor
February 1984, Biochimica et biophysica acta,
R A Bywater, and M E Holman, and G S Taylor
October 1996, The Journal of physiology,
R A Bywater, and M E Holman, and G S Taylor
June 1970, Nihon Heikatsukin Gakkai zasshi,
R A Bywater, and M E Holman, and G S Taylor
December 1997, The Journal of physiology,
R A Bywater, and M E Holman, and G S Taylor
January 1992, Pharmacological research,
R A Bywater, and M E Holman, and G S Taylor
October 1972, Japanese journal of pharmacology,
R A Bywater, and M E Holman, and G S Taylor
January 1955, Bollettino della Societa italiana di biologia sperimentale,
R A Bywater, and M E Holman, and G S Taylor
May 2008, Neurogastroenterology and motility,
R A Bywater, and M E Holman, and G S Taylor
January 2003, American journal of physiology. Gastrointestinal and liver physiology,
Copied contents to your clipboard!