Sodium current in single rat heart muscle cells. 1981

A M Brown, and K S Lee, and T Powell

1. Rapid inward Na current (INa) was studied in isolated cells from rat ventricular myocardium by a double-suction-pipette voltage clamp technique. All experiments were carried out at 20-22 degrees C. 2. INa elicited by single depolarizing voltage steps from a holding potential, VH, of -80 mV had a threshold between -70 and -60 mV and was maximal at -30 to -20 mV. Peak currents in Krebs-Ringer solution containing 145 mM Na were of the order 0.9-1.8 mA cm-2, assuming an average cell surface area of 8000 square micrometers. 3. The reversal potential for INa was predicted by the Nernst equation for external Na in the range 1.45-145 mM with 16 mM-Na solution perfusing the interior of the cell. 4. Instantaneous I-V plots were linear for potentials of -100 to + 10 mV. Maximum Na conductance (-gNa) was calculated to be 25 mS cm-2 in 145 mM-Na solutions and gNa was constant for potentials positive to -10 mV. 5. INa activated with a time constant of 0.7 msec at -55 mV, decreasing to 100 microsec on depolarizations positive to + 10 mV. 6. Two time constants (tau h1, tau h2) were required to describe INa inactivation during a maintained depolarization, with tau h2 three to four times as long as tau h1. tau h1 was about 2 msec at -50 mV, decreasing to 0.9 msec at -10 mV. 7. The time course for recovery of INa from inactivation also exhibited two time constants (tau r1, tau r2), with the longer tau r2 having a maximum value of the order 100 msec in the potential range -60 to -80 mV. 8. INa in isolated rat cardiac cells has a low sensitivity to tetrodotoxin, requiring a concentration of 30 micrometers for complete blockade.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu
D016276 Ventricular Function The hemodynamic and electrophysiological action of the HEART VENTRICLES. Function, Ventricular,Functions, Ventricular,Ventricular Functions

Related Publications

A M Brown, and K S Lee, and T Powell
July 1986, European journal of pharmacology,
A M Brown, and K S Lee, and T Powell
August 1982, Pflugers Archiv : European journal of physiology,
A M Brown, and K S Lee, and T Powell
January 1984, Society of General Physiologists series,
A M Brown, and K S Lee, and T Powell
May 1985, Pflugers Archiv : European journal of physiology,
A M Brown, and K S Lee, and T Powell
January 1990, Biophysical journal,
A M Brown, and K S Lee, and T Powell
January 1984, The Journal of membrane biology,
A M Brown, and K S Lee, and T Powell
November 1982, Biulleten' eksperimental'noi biologii i meditsiny,
A M Brown, and K S Lee, and T Powell
January 1985, Advances in myocardiology,
A M Brown, and K S Lee, and T Powell
January 2002, Gastroenterology,
Copied contents to your clipboard!