Mouse pancreatic acinar cells: voltage-clamp study of acetylcholine-evoked membrane current. 1981

M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott

1. A two-micro-electrode voltage-clamp technique was applied to a study of the resting properties of mouse pancreatic acinar cell membranes and the action of acetylcholine (ACh). 2. The resting voltage-current relation was linear. The specific membrane resistance was calculated to be about 10 k omega cm2. This value was doubled after removal of Cl from the tissue bath superfusion solution. 3. At a holding potential equal to the spontaneous resting potential (about -35 mV) micro-ionophoretic ACh application evoked inward current. Reversal of the polarity of the ACh-evoked current occurred at about - 15 mV. 4. The voltage dependence of the ACh-evoked current displayed inward rectification. This inward rectification could not be accounted for by the constant field equation. 5. The dose-response curves for ACh-evoked inward current were compared in the same units with dose-response curves for ACh-evoked depolarization. Half-maximal depolarization was consistently obtained at a lower dose of ACh than half-maximal inward current. 6. During steady-state exposure of the pancreatic tissue segments to Cl-free sulphate solution the ACh reversal potential was about + 10 mV and the voltage-current relationship for the ACh-controlled channels showed inward rectification. Removal of external Na from the Cl-free solution virtually abolished ACh-evoked inward current. 7. The resting pancreatic acinar cell membrane is electrically inexcitable. The relative permeabilities of the major monovalent ions appears to be PC1/PNa/PK = 2/0.23/1. The ACh-evoked inward current is largely carried by Na. Dose-response curves for ACh-evoked depolarization and inward current in the same acinar units are different, in such a way that the depolarization response saturates at lower ACh concentrations than the current response.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
September 1983, Pflugers Archiv : European journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
April 1974, The Journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
October 1994, Pflugers Archiv : European journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
January 2001, Pflugers Archiv : European journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
February 1989, Pflugers Archiv : European journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
September 1978, Pflugers Archiv : European journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
January 1978, The Journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
October 1976, Nature,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
April 1986, The Journal of physiology,
M McCandless, and A Nishiyama, and O H Petersen, and H G Philpott
December 2000, The Journal of biological chemistry,
Copied contents to your clipboard!