Periodate-oxidized AMP as a substrate, an inhibitor and an affinity label of human placental alkaline phosphatase. 1981

G G Chang, and S C Wang, and F Pan

Human placental alkaline phosphatase (EC 3.1.3.1) was inactivated by periodate-oxidized AMP. The inactivation showed saturation kinetics and could be partially prevented by the substrate AMP or the product inhibitor inorganic phosphate. Oxidized AMP was itself a substrate for this enzyme, with an apparent Km of 0.67 mM. The hydrolytic products of oxidized AMP were identified as oxidized adenosine hemiacetals. Oxidized AMP was also found to be a non-competitive inhibitor with respect to p-nitrophenyl phosphate, with identical Kis and Kii values of 0.15 mM. Our results indicate that oxidized AMP could combine with the enzyme to form a binary complex, followed by reaction with the proximal lysyl amino group to yield a Schiff base. The latter was reduced with NaBH4 and identified by t.l.c. The incorporation of only 1.5 molecules of oxidized [14C]AMP per enzyme subunit resulted in a complete inactivation of the enzyme. The modified enzyme showed higher apparent Km for the substrates and higher Ki for inorganic phosphate, but lower [32P]phosphate incorporation, than the native enzyme. These results support the conclusion that a lysine residue is involved in the phosphate-binding site of human placental alkaline phosphatase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009596 Nitrophenols PHENOLS carrying nitro group substituents. Nitrophenol
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.

Related Publications

G G Chang, and S C Wang, and F Pan
December 1990, The Biochemical journal,
G G Chang, and S C Wang, and F Pan
October 1993, Journal of protein chemistry,
G G Chang, and S C Wang, and F Pan
July 1987, Biochemical and biophysical research communications,
G G Chang, and S C Wang, and F Pan
July 1974, The Biochemical journal,
G G Chang, and S C Wang, and F Pan
August 1967, Enzymologia,
G G Chang, and S C Wang, and F Pan
January 1997, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!