Plasma clearance, tissue distribution and metabolism of hyaluronic acid injected intravenously in the rabbit. 1981

J R Fraser, and T C Laurent, and H Pertoft, and E Baxter

The plasma clearance, tissue distribution and metabolism of hyaluronic acid were studied with a high average molecular weight [3H]acetyl-labelled hyaluronic acid synthesized in synovial cell cultures. After intravenous injection in the rabbit the label disappeared from the plasma with a half-life of 2.5--4.5 min, which corresponds to a normal hyaluronic acid clearance of approx. 10 mg/day per kg body weight. Injection of unlabelled hyaluronic acid 15 min after the tracer failed to reverse its absorption. Clearance of labelled polymer was retarded by prior injection of excess unlabelled hyaluronic acid. The maximum clearance capacity was estimated in these circumstances to be about 30 mg/day per kg body wt. The injected material was concentrated in the liver and spleen. As much as 88% of the label was absorbed by the liver, where it was found almost entirely in non-parenchymal cells. Degradation was rapid and complete, since volatile material, presumably 3H2O, appeared in the plasma within 20 min. Undegraded [3H]hyaluronic acid, small labelled residues and 3H2O were detected in the liver, but there was little evidence of intermediate oligosaccharides. No metabolite except 3H2O was recognized in plasma or urine. Two-thirds of the radioactivity was retained in the body water 24 h later, and small amounts were found in liver lipids. Radioactivity did not decline in the spleen as rapidly as in the liver. The upper molecular weight limit for renal excretion was about 25 000. Renal excretion played a negligible part in clearance. It is concluded that hyaluronic acid is removed from the plasma and degraded quickly by an efficient extrarenal system with a high reserve capacity, sited mainly in the liver.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3

Related Publications

J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
December 1983, Infection and immunity,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
November 1979, Journal of immunology (Baltimore, Md. : 1950),
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
December 1964, Acta physiologica Scandinavica,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
July 1976, Ceskoslovenska oftalmologie,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
January 1958, Naunyn-Schmiedebergs Archiv fur experimentelle Pathologie und Pharmakologie,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
November 1979, Metabolism: clinical and experimental,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
March 1975, Experimental eye research,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
October 1958, British journal of haematology,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
August 1977, Experimental eye research,
J R Fraser, and T C Laurent, and H Pertoft, and E Baxter
February 1966, The Journal of clinical investigation,
Copied contents to your clipboard!