Calcium-induced quiescence in reactivated sea urchin sperm. 1980

B H Gibbons, and I R Gibbons

Sperm flagella of the sea urchin Tripneustes gratilla beat with asymmetrical bending waves after demembranation with Triton X-100 in the presence of EGTA and reactivation at pH 8.1 with 1 mM ATP in the presence of 2 mM MgSO4. Addition of 0.1--0.2 mM free Ca2+ to these reactivated sperm induces 70--95% of them to become quiescent. This quiescence can be reversed by reduction of the free Ca2% concentration with EGTA, or by dilution to reduce the MgATP2- concentration below 0.3 mM. The quiescent waveform is characterized by a sharp principal bend of approximately 5.6 rad in the proximal region of the flagellum, a slight reverse bend in the midregion that averages approximately 0.3 rad, and a principal bend of approximately 1.1 rad in the tip. The quiescent sperm are highly fragile mechanically, and disruption, including microtubule sliding, occurs spontaneously at a slow rate upon standing or immediately upon gentle agitation. Mild digestion by trypsin causes a gradual appearance of normal, symmetrical flagellar beating. Addition of increasing concentrations of vanadate to quiescent sperm causes a graded decrease in the proximal bend angle, with 50 micrometers vanadate reducing it to approximately 2.6 rad. In the presence of 0.1 mM free Ca2% and 10 micrometers vanadate, a characteristic, crescented stationary bend is induced in the demembranated sperm, without intermediate oscillatory beating, by the addition of either 0.1 or 1 mM ATP. In the absence of vanadate, these two concentrations of ATP produce asymmetric beating and quiescence, respectively. The results support the hypothesis that quiescence in live sperm is induced by an elevated concentration of intracellular Ca2%. In addition, they demonstrate that bending can occur in flagella in which oscillatory beating is inhibited and emphasize the close relationship between asymmetric beating and quiescence.

UI MeSH Term Description Entries
D008278 Magnesium Sulfate A small colorless crystal used as an anticonvulsant, a cathartic, and an electrolyte replenisher in the treatment of pre-eclampsia and eclampsia. It causes direct inhibition of action potentials in myometrial muscle cells. Excitation and contraction are uncoupled, which decreases the frequency and force of contractions. (From AMA Drug Evaluations Annual, 1992, p1083) Magnesium Sulfate, Heptahydrate,Heptahydrate Magnesium Sulfate,Sulfate, Magnesium
D008297 Male Males
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013082 Sperm Tail The posterior filiform portion of the spermatozoon (SPERMATOZOA) that provides sperm motility. Sperm Flagellum,Flagellum, Sperm,Flagellums, Sperm,Sperm Flagellums,Sperm Tails,Tail, Sperm,Tails, Sperm
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

B H Gibbons, and I R Gibbons
March 2000, Journal of cell science,
B H Gibbons, and I R Gibbons
January 1995, Cell motility and the cytoskeleton,
B H Gibbons, and I R Gibbons
January 1991, Cell motility and the cytoskeleton,
B H Gibbons, and I R Gibbons
June 1974, Biochemical and biophysical research communications,
B H Gibbons, and I R Gibbons
August 1979, The Journal of cell biology,
B H Gibbons, and I R Gibbons
October 1980, The Journal of cell biology,
B H Gibbons, and I R Gibbons
June 1975, The Journal of experimental biology,
B H Gibbons, and I R Gibbons
January 1986, European journal of biochemistry,
Copied contents to your clipboard!