Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. 1980

J Pierce, and N E Tolbert, and R Barker

2-C-Carboxy-D-ribitol 1,5-bisphosphate and 2-C-carboxy-D-arabinitol 1,5-bisphosphate have been synthesized, purified, and characterized. In the presence of Mg2+, 2-C-carboxy-D-arabinitol 1,5-bisphosphate binds to ribulose-1,5-bisphosphate carboxylase/oxygenase by a two-step mechanism. The first, rapid step is similar to the binding of ribulose 1,5-bisphosphate or its structural analogues. The second step is a slower process (k = 0.04 s-1) and accounts for the tighter binding of 2-C-carboxy-D-arabinitol 1,5-bisphosphate (Kd less than or approximately to 10(-11) M) than of 2-C-carboxy-D-ribitol 1,5-bisphosphate (Kd = 1.5 X 10(6) M). Both carboxypentitol bisphosphates exhibit competitive inhibition with respect to ribulose 1,5-bisphosphate. 2-C-(Hydroxymethyl)-D-ribitol 1,5-bisphosphate and 2-C-(hydroxymethyl)-D-arabinitol 1,5-bisphosphate were also synthesized; both are competitive inhibitors with respect to ribulose 1,5-bisphosphate with Ki = 8.0 X 10(-5) M and Ki = 5.0 X 10(-6) M, respectively. Thus, the carboxyl group of 2-C-carboxy-D-arabinitol 1,5-bisphosphate is necessary for maximal interaction with the enzyme. Additionally, Mg2+ is essential for the tight binding of 2-C-carboxy-D-arabinitol 1,5-bisophsphate. A model for catalysis of ribulose 1,5-bisphosphate carboxylation is discussed which includes a functional role for Mg2+ in the stabilization of the intermediate 2-C-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. Mechanistic implications that arise from the stereochemistry of this intermediate are also discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010428 Pentosephosphates
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D012273 Ribulose-Bisphosphate Carboxylase A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration. Carboxydismutase,Ribulose Biphosphate Carboxylase-Oxygenase,Ribulose Diphosphate Carboxylase,Ribulosebiphosphate Carboxylase,Rubisco,1,5-Biphosphate Carboxylase-Oxygenase,Ribulose Biphosphate Carboxylase,Ribulose Bisphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase,Ribulose-1,5-Biphosphate Carboxylase-Oxygenase,Ribulose-1,5-Bisphosphate Carboxylase Small-Subunit,Ribulose-Bisphosphate Carboxylase Large Subunit,Ribulose-Bisphosphate Carboxylase Small Subunit,Rubisco Small Subunit,1,5 Biphosphate Carboxylase Oxygenase,Biphosphate Carboxylase-Oxygenase, Ribulose,Carboxylase Small-Subunit, Ribulose-1,5-Bisphosphate,Carboxylase, Ribulose Bisphosphate,Carboxylase, Ribulose Diphosphate,Carboxylase, Ribulose-1,5-Biphosphate,Carboxylase, Ribulose-Bisphosphate,Carboxylase, Ribulosebiphosphate,Carboxylase-Oxygenase, 1,5-Biphosphate,Carboxylase-Oxygenase, Ribulose Biphosphate,Carboxylase-Oxygenase, Ribulose-1,5-Biphosphate,Diphosphate Carboxylase, Ribulose,Ribulose 1,5 Biphosphate Carboxylase,Ribulose 1,5 Biphosphate Carboxylase Oxygenase,Ribulose 1,5 Bisphosphate Carboxylase Small Subunit,Ribulose Biphosphate Carboxylase Oxygenase,Ribulose Bisphosphate Carboxylase Large Subunit,Ribulose Bisphosphate Carboxylase Small Subunit,Small Subunit, Rubisco,Small-Subunit, Ribulose-1,5-Bisphosphate Carboxylase
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

J Pierce, and N E Tolbert, and R Barker
January 1982, Methods in enzymology,
J Pierce, and N E Tolbert, and R Barker
January 1982, Biochemistry,
J Pierce, and N E Tolbert, and R Barker
July 1984, Archives of biochemistry and biophysics,
J Pierce, and N E Tolbert, and R Barker
December 1992, Biochimica et biophysica acta,
J Pierce, and N E Tolbert, and R Barker
January 1990, The Journal of biological chemistry,
J Pierce, and N E Tolbert, and R Barker
January 1977, Methods in enzymology,
J Pierce, and N E Tolbert, and R Barker
February 1978, Biochemical and biophysical research communications,
J Pierce, and N E Tolbert, and R Barker
May 1991, The Journal of biological chemistry,
Copied contents to your clipboard!