Acetylcholine release evoked by single or a few nerve impulses in the electric organ of Torpedo. 1980

Y Dunant, and L Eder, and L Servetiadis-Hirt

1. The acetylcholine (ACh) store in the Torpedo electric organ was partially labelled with choline and acetate at the same molar concentration but with different isotopes. Under these conditions the two precursors were incorporated into ACh in a ratio 1 to 1. 2. After a single electrical stimulus, or a brief burst of stimuli, the compound electroplaque potential (e.p.p.) was recorded and the radioactive choline and/or acetate counted in the perfusion fluid, providing a sensitive assay for ACh release in the absence of anticholinesterase drugs. 3. The so-called depression of transmission was found to be due to progressive impairment of ACh release in the successive impulses evoked by repeated stimuli. 4. In a pair of impulses separated by 50 ms interval, less ACh was released by the second than by the first impulse; this explained why the size of the second e.p.p. was depressed, using a direct measurement of ACh. 5. In repetitive stimulations of longer duration, the maximum rate of release declined as the activity was prolonged. Thus the tissue progressively lost its ability to ensure release at high frequencies. 6. An unexpected finding was that anticholinesterases like eserine or pre-treatment with fluostigmine (DFP) greatly reduced ACh release even by a single impulse. 7. Evoked ACh release and e.p.p. amplitude were both maximum between 10 and 20 degrees C. At higher temperatures, the evoked release decreased as the spontaneous release increased. 8. Changes in external Ca2+ and Mg2+ produced similar changes in the e.p.p. and evoked ACh release. The dose--response curve for Ca dependency of ACh release was very steep with a Hill's coefficient of 3.2. 9. With a single stimulus in the presence of 4-aminopyridine, there was a dramatic enlargement of the e.p.p. and a still larger potentiation of the evoked ACh release. 10. It has been possible with this approach to avoid the inconveniences often encountered in simliar studies, i.e. repetitive stimulation, low Ca solutions and cholinesterase inhibition. This permitted a good correlation between electrophysiological and biochemical estimates of transmitter release even by a single nerve impulse.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D005260 Female Females
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000631 Aminopyridines Pyridines substituted in any position with an amino group. May be hydrogenated but must retain at least one double bond. Aminopyridine

Related Publications

Y Dunant, and L Eder, and L Servetiadis-Hirt
January 1982, Journal de physiologie,
Y Dunant, and L Eder, and L Servetiadis-Hirt
January 1987, European journal of pharmacology,
Y Dunant, and L Eder, and L Servetiadis-Hirt
April 1982, The Journal of physiology,
Y Dunant, and L Eder, and L Servetiadis-Hirt
January 1985, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology,
Y Dunant, and L Eder, and L Servetiadis-Hirt
February 1982, European journal of pharmacology,
Y Dunant, and L Eder, and L Servetiadis-Hirt
August 1987, Journal of neurochemistry,
Y Dunant, and L Eder, and L Servetiadis-Hirt
April 1977, Brain research,
Y Dunant, and L Eder, and L Servetiadis-Hirt
September 1965, Nature,
Y Dunant, and L Eder, and L Servetiadis-Hirt
July 1984, Brain research,
Y Dunant, and L Eder, and L Servetiadis-Hirt
October 1978, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!