Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. 1980

A K Hopper, and L D Schultz, and R A Shapiro

By using conditional loss of suppression an an assay, we have been successful in screening for a yeast mutant which is defective in tRNA processing. The los1-1 mutation causes an accumulation of a subset of precursor tRNAs at the nonpermissive temperature. These pre-tRNAs are like those which accumulate in the yeast mutant ts 136 (rna1) in that they have transcribed intervening sequences. The mutations at los1-1 and rna1 complement and segregate independently of each other. The los1-1 mutation affects the expression of all 8 tyrosine-inserting suppressor loci, but does not seem to affect rRNA or mRNA synthesis.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009694 Nucleic Acid Precursors Use for nucleic acid precursors in general or for which there is no specific heading. Acid Precursors, Nucleic,Precursors, Nucleic Acid
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

A K Hopper, and L D Schultz, and R A Shapiro
August 1978, Nature,
A K Hopper, and L D Schultz, and R A Shapiro
June 1978, Cell,
A K Hopper, and L D Schultz, and R A Shapiro
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
A K Hopper, and L D Schultz, and R A Shapiro
June 1978, Cell,
A K Hopper, and L D Schultz, and R A Shapiro
February 1981, Nucleic acids research,
A K Hopper, and L D Schultz, and R A Shapiro
January 2011, Wiley interdisciplinary reviews. RNA,
A K Hopper, and L D Schultz, and R A Shapiro
November 1976, FEBS letters,
A K Hopper, and L D Schultz, and R A Shapiro
October 1971, FEBS letters,
Copied contents to your clipboard!