Release of two thioesterase domains from fatty acid synthetase by limited digestion with trypsin. 1978

K N Dileepan, and C Y Lin, and S Smith

Limited digestion, with trypsin, of the fatty acid synthetase from rat mammary gland releases an enzymically active thioesterase component that, under denaturing conditions, consists of two major species of mol.wts. 35000 and 17500 and a minor species, mol.wt. 15,000. The 17500- and 150000-mol.wt. species are shown to originate from the 35000-mol.wt. species as a result of nicking by trypsin. The nicked polypeptides are enzymically active. The fatty acid synthetase is inhibited by [1,3-14C]di-isopropyl phosphorofluoridate, which is shown to bind to, and inactivate, two thioesterase active sites. When the [1,3-14C]di-isopropyl phosphate-labelled fatty acid synthetase is subjected to limited digestion with trypsin, all of the radioactivity is recovered in the isolated thioesterase component, i.e. in the 35000-mol.wt. polypeptide and its nicked products. Since the isolated thioesterase is shown to bind only one di-isopropyl phosphate residue per 35000-mol.wt. polypeptide, we conclude that the fatty acid synthetase has two thioesterase domains, both of which are removed by limited trypsin treatment.

UI MeSH Term Description Entries
D007531 Isoflurophate A di-isopropyl-fluorophosphate which is an irreversible cholinesterase inhibitor used to investigate the NERVOUS SYSTEM. DFP,Diisopropylfluorophosphate,Fluostigmine,Bis(1-methylethyl) Phosphorofluoridate,Di-isopropylphosphorofluoridate,Diisopropylphosphofluoridate,Dyflos,Floropryl,Fluorostigmine,Di isopropylphosphorofluoridate
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D013869 Thiolester Hydrolases Hydrolases, Thiolester
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin
D064429 Fatty Acid Synthases Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives. Fatty Acid Synthase,Fatty Acid Synthetases,Acid Synthase, Fatty,Acid Synthases, Fatty,Synthase, Fatty Acid,Synthetases, Fatty Acid

Related Publications

K N Dileepan, and C Y Lin, and S Smith
April 1976, Proceedings of the National Academy of Sciences of the United States of America,
K N Dileepan, and C Y Lin, and S Smith
March 1978, The Journal of biological chemistry,
K N Dileepan, and C Y Lin, and S Smith
June 1981, Biochemical and biophysical research communications,
K N Dileepan, and C Y Lin, and S Smith
March 1982, The Journal of biological chemistry,
K N Dileepan, and C Y Lin, and S Smith
October 1982, Indian journal of biochemistry & biophysics,
K N Dileepan, and C Y Lin, and S Smith
February 1976, Biochemical and biophysical research communications,
K N Dileepan, and C Y Lin, and S Smith
June 1979, The Biochemical journal,
Copied contents to your clipboard!