Effects of current flow on pacemaker activity of the isolated kitten sinoatrial node. 1980

J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe

The dynamic behavior of the cardiac pacemaker in response to single or to periodically repeated perturbations was studied using kitten sinoatrial (SA) nodal strips mounted in a sucrose gap. Sustained stepwise applications of current across the gap produce lasting variations in pacemaker cycle length that depend on current magnitude and polarity, but not on the phase of the pacemaker period at the time of the input. Brief current pulses, whether hyperpolarizing or depolarizing, may abbreviate or prolong the immediately affected cycle depending on their timing. These changes result in phase shifts of the subsequent discharges, but they do not alter the pacemaker period permanently. The phasic effects of brief current pulses can be described by a phase response curve (PRC), which is a plot of the phase shift as a function of the position of the stimulus in the pacemaker cycle. PRCs were constructed for inputs of different polarity and several strengths and durations. The behavior of the sinus nodal pacemaker when interacting with period perturbing inputs, such as vagal stimulation or electrotonic depolarization, can be predicted on the basis of the phase response curve.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014630 Vagus Nerve The 10th cranial nerve. The vagus is a mixed nerve which contains somatic afferents (from skin in back of the ear and the external auditory meatus), visceral afferents (from the pharynx, larynx, thorax, and abdomen), parasympathetic efferents (to the thorax and abdomen), and efferents to striated muscle (of the larynx and pharynx). Cranial Nerve X,Pneumogastric Nerve,Tenth Cranial Nerve,Nerve X,Nervus Vagus,Cranial Nerve, Tenth,Cranial Nerves, Tenth,Nerve X, Cranial,Nerve Xs,Nerve, Pneumogastric,Nerve, Tenth Cranial,Nerve, Vagus,Nerves, Pneumogastric,Nerves, Tenth Cranial,Nerves, Vagus,Pneumogastric Nerves,Tenth Cranial Nerves,Vagus Nerves,Vagus, Nervus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
March 2014, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
August 2002, Journal of cardiovascular electrophysiology,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
January 1989, Archives internationales de pharmacodynamie et de therapie,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
October 2007, European heart journal,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
November 2014, Pakistan journal of pharmaceutical sciences,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
June 2002, American journal of physiology. Heart and circulatory physiology,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
August 1996, Nihon rinsho. Japanese journal of clinical medicine,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
January 2015, International journal of molecular sciences,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
August 1995, The American journal of physiology,
J Jalife, and A J Hamilton, and V R Lamanna, and G K Moe
March 2009, International journal of cardiology,
Copied contents to your clipboard!