Scanning electron microscopy of the respiratory surfaces of Saccobranchus (= Heteropneustes) fossilis (Bloch). 1978

G M Hughes, and J S Munshi

The gill secondary lamellae are generally covered with epithelial cells whose outer surfaces form numerous microvilli. The surface of the primary lamellae is characterised by microridges. A particular type of surface sculpturing seems to be associated with given cell boundaries. Further evidence for the derivation of the air tube and fans which guard its entrance by modification of the basic gill structure has been obtained from both the gross surface architecture and microstructure of the individual cell surfaces. Secondary lamellae are represented by stubby projections which generally have a biserial arrangement. The outer surfaces of the epithelia overlying the capillaries of these respiratory islets are coated with microvilli as in the secondary lamellae. On the other hand, the relatively smooth-surfaced 'lanes' between groups of respiratory islets have a microridged surface similar to that of the primary gill lamellae. It is suggested that previous estimates of surface area, and consequently diffusing capacities of the air-breathing organ, have been low in view of the increased surface, due to both their gross and microstructure. Estimates for gill surface area may need very little correction as the spaces between the microvilli and microridges are probably filled with mucus under normal conditions.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005880 Gills Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment. Gill
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G M Hughes, and J S Munshi
June 2015, Bulletin of environmental contamination and toxicology,
G M Hughes, and J S Munshi
February 1974, Mikroskopie,
G M Hughes, and J S Munshi
July 1977, Physiology & behavior,
G M Hughes, and J S Munshi
February 2011, Zygote (Cambridge, England),
Copied contents to your clipboard!