High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin, and horseradish peroxidase. 1980

I Morishima, and S Ogawa, and H Yamada

Hyperfine shifted proton NMR spectra of metmyoglobin, methemoglobin, and their complexes with azide, imidazole, and cyanide as well as the spectrum of native horseradish peroxidase were obtained at high pressures up to 2000 atm with a specially designed high-pressure cell for 220-MHz superconducting NMR spectrometer. For the azide complexes of metmyoglobin, in all of which the iron atoms are in thermal spin equilibrium between high- and low-spin states, the increased pressure shifted their heme methyl proton signals to the upfield side. For the cyanide complexes of metmyoglobin and methemoglobin and for the fluoride complex of metmyoglobin, which are in purely low- and high-spin states, respectively, the spectra were almost insensitive to changes in pressure up to 2000 atm. The heme methyl proton signals of aquometmyoglobin, its formate complex, and horseradish peroxidase showed appreciable upfield shifts upon pressurization. These results were interpreted to indicate that the primary effect of pressure on the hemoprotein structure is to shift the spin equilibrium in favor of the low-spin form. Hemichrome formation of methemoglobin at high pressures was also observed, and the effect of pressure on the heme environmental structure of deoxyhemoglobin and deoxymyoglobin was also discussed.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D009211 Myoglobin A conjugated protein which is the oxygen-transporting pigment of muscle. It is made up of one globin polypeptide chain and one heme group.
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010544 Peroxidases Ovoperoxidase
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic

Related Publications

I Morishima, and S Ogawa, and H Yamada
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
I Morishima, and S Ogawa, and H Yamada
March 1987, The Journal of biological chemistry,
I Morishima, and S Ogawa, and H Yamada
January 1994, Methods in enzymology,
I Morishima, and S Ogawa, and H Yamada
November 1970, Proceedings of the National Academy of Sciences of the United States of America,
I Morishima, and S Ogawa, and H Yamada
July 1980, The Journal of biological chemistry,
I Morishima, and S Ogawa, and H Yamada
January 1978, Advances in biophysics,
I Morishima, and S Ogawa, and H Yamada
July 1975, Biochemistry,
I Morishima, and S Ogawa, and H Yamada
December 1982, Biochemistry,
Copied contents to your clipboard!