Loss and reacquisition of hippocampal synapses after selective destruction of CA3-CA4 afferents with kainic acid. 1980

J V Nadler, and B W Perry, and C Gentry, and C W Cotman

Intraventricular injections of kainic acid were used to destroy the hippocampal CA3-CA4 cells bilaterally in rats, thus denervating the inner third of the molecular layer of the fascia dentata and stratum radiatum of area CA1. Electron microscopic studies showed that this lesion reduced the synaptic density of the CA1 stratum radiatum by an average of 86%. The synaptic density of the inner third of the dorsal dentate molecular layer declined by two-thirds and the corresponding zone of the ventral dentate molecular layer by about half. Within 6-8 weeks the synaptic density of these laminae had been restored to the control value or nearly so. In the CA1 stratum radiatum about 72% of the synaptic contacts destroyed by the lesion were replaced, the inner third of the ventral dentate molecular layer recovered 75% of its lost synapses and the inner third of the dorsal dentate molecular layer apparently recovered virtually all of them. The newly formed synapses did not differ noticeably from those normally present. A kainic acid lesion reduced the synaptic density of the outer two-thirds of the dentate molecular layer by 30% within 3-5 days, despite a virtual absence of presynaptic degeneration in that zone. This result implies a substantial disconnection of perforant path synapses. It did not appear to depend on the extent of denervation of the inner zone. The loss of perforant path synapses was completely reversible. We suggest that the dentate granule cells shed a portion of their synapses in response to a substantial loss of neurons to which they project and regained them when their axons had formed new synaptic connections.

UI MeSH Term Description Entries
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J V Nadler, and B W Perry, and C Gentry, and C W Cotman
March 1982, Experimental neurology,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
April 1986, Behavioral neuroscience,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
October 2013, Bulletin of experimental biology and medicine,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
October 1998, Neuroscience letters,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
January 1987, Experimental brain research,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
September 1982, Brain research,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
January 2016, eNeuro,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
January 1989, Alcohol (Fayetteville, N.Y.),
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
October 2013, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J V Nadler, and B W Perry, and C Gentry, and C W Cotman
February 1996, Brain research. Developmental brain research,
Copied contents to your clipboard!