Development of a cardiac antiarrhythmic screening test utilizing theophylline in the rat. 1980

E F Erker, and T Baker

Cardiac arrhythmias were produced in Sprague-Dawley-derived rats by chloroform challenge. The incidence of cardiac arrhythmias so induced increased with age and as a function of dose after pretreatment with theophylline. The dose-response and time-action parameters of theophylline's predisposing action to chloroform-hypoxia-induced cardiac arrhythmias were determined. This information has been utilized to develop a cardiac antiarrhythmic screening test in unanesthetized rats which is presented in the following paper.

UI MeSH Term Description Entries
D008297 Male Males
D002725 Chloroform A commonly used laboratory solvent. It was previously used as an anesthetic, but was banned from use in the U.S. due to its suspected carcinogenicity. Trichloromethane
D004353 Drug Evaluation, Preclinical Preclinical testing of drugs in experimental animals or in vitro for their biological and toxic effects and potential clinical applications. Drug Screening,Evaluation Studies, Drug, Pre-Clinical,Drug Evaluation Studies, Preclinical,Drug Evaluations, Preclinical,Evaluation Studies, Drug, Preclinical,Evaluation, Preclinical Drug,Evaluations, Preclinical Drug,Medicinal Plants Testing, Preclinical,Preclinical Drug Evaluation,Preclinical Drug Evaluations,Drug Screenings,Screening, Drug,Screenings, Drug
D004562 Electrocardiography Recording of the moment-to-moment electromotive forces of the HEART as projected onto various sites on the body's surface, delineated as a scalar function of time. The recording is monitored by a tracing on slow moving chart paper or by observing it on a cardioscope, which is a CATHODE RAY TUBE DISPLAY. 12-Lead ECG,12-Lead EKG,12-Lead Electrocardiography,Cardiography,ECG,EKG,Electrocardiogram,Electrocardiograph,12 Lead ECG,12 Lead EKG,12 Lead Electrocardiography,12-Lead ECGs,12-Lead EKGs,12-Lead Electrocardiographies,Cardiographies,ECG, 12-Lead,EKG, 12-Lead,Electrocardiograms,Electrocardiographies, 12-Lead,Electrocardiographs,Electrocardiography, 12-Lead
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000628 Aminophylline A drug combination that contains THEOPHYLLINE and ethylenediamine. It is more soluble in water than theophylline but has similar pharmacologic actions. It's most common use is in bronchial asthma, but it has been investigated for several other applications. Afonilum,Aminodur,Aminophyllin,Aminophylline DF,Cardophyllin,Carine,Clonofilin,Corophyllin,Diaphyllin,Drafilyn,Duraphyllin,Eufilina,Eufilina Venosa,Euphyllin,Euphyllin Retard,Euphylline,Godafilin,Mini-Lix,Mundiphyllin,Mundiphyllin Retard,Novophyllin,Phyllocontin,Phyllotemp,Somophyllin,Tari-Dog,Theophyllamin Jenapharm,Theophyllamine,Theophyllin EDA-ratiopharm,Theophylline Ethylenediamine,Truphylline,Ethylenediamine, Theophylline,Theophyllin EDA ratiopharm,Theophyllin EDAratiopharm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic

Related Publications

E F Erker, and T Baker
October 1985, Archives internationales de pharmacodynamie et de therapie,
E F Erker, and T Baker
May 1987, Methods and findings in experimental and clinical pharmacology,
E F Erker, and T Baker
May 1970, British journal of pharmacology,
E F Erker, and T Baker
April 1987, Archives internationales de pharmacodynamie et de therapie,
E F Erker, and T Baker
January 2005, Current pharmaceutical design,
E F Erker, and T Baker
May 2024, American journal of clinical pathology,
E F Erker, and T Baker
September 1955, Circulation research,
E F Erker, and T Baker
November 1990, Journal of clinical pharmacology,
Copied contents to your clipboard!