Ultrastructural changes at gap junctions between lesioned crayfish axons. 1980

G D Bittner, and M L Ballinger

In crayfish, the severed distal segment of single lateral giant axon (SLGA) often survives for at least 10 months after lesioning if this segme;t retains a septal region of apposition with an adjacent, intact SLGA. In control (unsevered) SLGAs, this septal usually contains gap junctions and 50-60 nm vesicles near the axolemma of both SLGAs. From 1-14 days after lesioning, the distal segment of a severed SLGA undergoes obvious ultrastructural changes in mitochondria and neurotubular organization compared to control SLGAs or to adjacent, intact SLGAs in the same animal. Gap junctions are very difficult to locate in severed SLGAs within 24 h after lesioning. From two weeks to ten months after lesioning, the surviving stumps of severed SLGAs often appear remarkably normal except that structures normally associated with the presence of gap junctions remain very difficult to find. These and other data suggest that SLGA distal segments receive trophic support from adjacent, intact SLGAs. The mechanism of this support probably could not be via diffusion across gap junctions between intact and severed SLGAs since gap junctions largely disappear after lesioning. However, trophic maintenance could occur via the exocytotic - pinocytotic action of 50-60 nm vesicles which are always present on both sides of the septum between an intact SLGA and a severed SLGA distal segment.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G D Bittner, and M L Ballinger
January 1991, Proceedings of the Western Pharmacology Society,
G D Bittner, and M L Ballinger
May 1960, Nature,
G D Bittner, and M L Ballinger
October 2001, Neuroscience research,
G D Bittner, and M L Ballinger
November 1961, The Journal of general physiology,
G D Bittner, and M L Ballinger
February 1985, Brain research,
G D Bittner, and M L Ballinger
January 1988, The Journal of membrane biology,
G D Bittner, and M L Ballinger
December 1974, The Journal of general physiology,
G D Bittner, and M L Ballinger
January 1988, Brain research,
G D Bittner, and M L Ballinger
March 1985, Journal of cell science,
G D Bittner, and M L Ballinger
June 1980, Journal of ultrastructure research,
Copied contents to your clipboard!