Distribution within chromatin of deoxyribonucleic acid repair synthesis occurring at different times after ultraviolet radiation. 1980

M J Smerdon, and M W Lieberman

We have compared the initial distribution and subsequent redistribution within chromatin of nucleotides incorporated during the early ("rapid") phase and the late ("slow") phase of UV-induced DNA repair synthesis. As has been observed for the early repair phase, most or all of the nucleotides incorporated during the late repair phase are initially staphylococcal nuclease and DNase I "sensitive" (i.e., rapidly digested). This initial enhanced sensitivity is accompanied by both an underrepresentation of these nucleotides in the 145--165 base pari (core) DNA produced by staphylococcal nuclease digestion and an absence of these nucleotides in the approximately 20-base repeat pattern produced by DNase I digestion. Furthermore, nucleotides incorporated at late time after damage are involved in nucleosome rearrangements as reported previously for repair synthesis occurring at early times [Smerdon, M. J., & Lieberman, M. W. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4238--4241]. The kinetics of redistribution, however, appear to be more rapid than those observed for early times. Following redistribution the average nucleosome repeat length of DNA containing repair-incorporated nucleotides is the same as that of bulk DNA regardless of the time after damage that repair occurs; also, many of these nucleotides coelectrophorese with the approximately 10-base repeat fragments generated by DNase I. The results yield a new interpretation of our previous studies [Smerdeon, M. J., Tlsty, T. D., & Lieberman, M. W. (1978) Biochemistry 17, 2377--2386] on the distribution of nucleotides incorporated at long times after UV irradiation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

M J Smerdon, and M W Lieberman
April 1971, Biochemistry,
M J Smerdon, and M W Lieberman
January 1960, Biochimica et biophysica acta,
M J Smerdon, and M W Lieberman
November 1967, Journal of bacteriology,
M J Smerdon, and M W Lieberman
June 1971, Archives roumaines de pathologie experimentales et de microbiologie,
M J Smerdon, and M W Lieberman
July 1973, Japanese journal of microbiology,
M J Smerdon, and M W Lieberman
March 1970, Journal of bacteriology,
Copied contents to your clipboard!