The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. 1980

B R Copeland, and H M McConnel

Freeze-fracture electron microscopy is used to study the rippled texture in pure dimyristoyl and dipalmitoyl phosphatidylcholine membranes and in mixtures of dimyristoyl phosphatidylcholine and cholesterol. Evidence is presented that the apparent phase transition properties of multilamellar liposomes may be dependent on the manner in which liposomes are prepared. Under certain conditions the ripple structures as visualized by freeze-fracture electron microscopy for the pure phosphatidylcholines are observed to be temperature dependent in the vicinity of the pretransition. Thus the transition can sometimes appear to be a gradual transition rather than a sharp, first-order phase transition. In mixtures of dimyristoyl phosphatidylcholine and cholesterol, the ripple repeat distance is found to increase as the cholesterol concentration is increased between 0 and 20 mol%. Above 20 mol%, no rippling is observed. A simple theory is presented for the dependence of ripple repeat spacing on cholesterol concentration in the range 0--20 mol%. This theory accounts for the otherwise inexplicable abrupt increase in the lateral diffusion coefficients of fluorescent lipids in binary mixtures of phosphatidylcholine and cholesterol when the cholesterol concentration is increased above 20 mol%.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings

Related Publications

B R Copeland, and H M McConnel
July 1981, Biochemistry,
B R Copeland, and H M McConnel
March 1976, FEBS letters,
B R Copeland, and H M McConnel
January 1984, The Italian journal of biochemistry,
B R Copeland, and H M McConnel
November 2018, Langmuir : the ACS journal of surfaces and colloids,
Copied contents to your clipboard!