Effect of testosterone on the female hamster Harderian gland pigmentation and ultrastructure. 1980

C Y Sun, and M J Nadakavukaren

Distinct differences occur in the pigmentation and ultrastructural features of the Harderian glands in male and female hamsters. The results of a study on the effect of testosterone on the fine structure of the female Harderian glands are presented here. Glands from three groups of hamsters were examined at intervals up to 49 days: (1) testosterone injected, receiving 2 mg testosterone propionate in 0.1 ml sesame oil per day; (2) sham-injected, receiving 0.1 ml sesame oil per day; (3) untreated controls. Testosterone injections caused a reduction in the number of dark-brown pigment granules in the acinar cells starting on the 6th day, whereas clusters of tubules, typical of adult male glands, appeared on the 4th day and increased in number thereafter. Lamellar structures, normally present in the female gland, decreased in testosterone treated specimens. These changes reversed after cessation of testosterone treatment. It is concluded that exogenous testosterone administered to female hamsters modifies the pigmentation and ultrastructure of their Harderian glands towards the male type and that this is a reversable phenomenon. There also appears to be an inverse relationship between the presence of tubular clusters in the acinar cells, and the degree of pigmentation.

UI MeSH Term Description Entries
D007765 Lacrimal Apparatus The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system. Lacrimal Gland,Nasolacrimal Apparatus,Conjunctival Sacs,Lacrimal Ducts,Lacrimal Punctum,Lateral Canthus,Medial Canthus,Apparatus, Lacrimal,Apparatus, Nasolacrimal,Canthus, Lateral,Canthus, Medial,Conjunctival Sac,Duct, Lacrimal,Gland, Lacrimal,Lacrimal Duct,Lacrimal Glands,Lacrimal Punctums,Punctum, Lacrimal,Sac, Conjunctival
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010858 Pigmentation Coloration or discoloration of a part by a pigment. Pigmentations
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006243 Harderian Gland A sebaceous gland that, in some animals, acts as an accessory to the lacrimal gland. The harderian gland excretes fluid that facilitates movement of the third eyelid. Gland, Harderian
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

C Y Sun, and M J Nadakavukaren
July 1992, Comparative biochemistry and physiology. B, Comparative biochemistry,
C Y Sun, and M J Nadakavukaren
January 1972, Science (New York, N.Y.),
C Y Sun, and M J Nadakavukaren
January 1972, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
C Y Sun, and M J Nadakavukaren
January 1996, Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology,
C Y Sun, and M J Nadakavukaren
January 1960, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
C Y Sun, and M J Nadakavukaren
January 1983, Cell and tissue research,
C Y Sun, and M J Nadakavukaren
August 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
C Y Sun, and M J Nadakavukaren
January 1990, Zeitschrift fur mikroskopisch-anatomische Forschung,
Copied contents to your clipboard!